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PREEACE

Le pr6sent volume contiont les textes des communications
pr6sent~es A la Neuvibme Conf~rence Internationale sur
les M6thodes do Calcul Scientifique et Technique.

Les actes do cette Conf6rence refI~tent INvolution du
calcul sciontifique au cours; de ces dernibres ann6es, A
savoir:

1/ Au plan m~thodologlque

Un recours accru aux calculateurs vectoriels et parallbles,
impliquant la n6cessit6 do ropenser l'algorithmique
num6rique et los logiciels permettant do la mettre e n
oeuvre sur ces nouveiies; machines.

2/ Au plan des applications

La r6solution des problbmes complexes issus do la
simulation num~rique en hypersonique, en micro-
6lectronique, en chimie quantique, en combustion ou
associ~s au d6veloppoment on cours concernant los
stations spatiales habit6es.

3/ Au plan des math~matiques appllqu6es

Le d~veloppement do m6thodes nouvolles telles quo los
ondolottes, dont le domaino d'application ost sans cesse
croissant, on particulier grAce A lrintoraction des
disciplines sciontifiquos, suscit~o par des manifestations
telles quo cetto Conf6ronce.

Nous esp~rons quo los participants b6n6ficieront des
communications pr6sent6es lors do cotto roncontro, ot des
possibilit~s do communiquor diroctomont avec los
conf~renciors ot autros sp~cialistos pr~sents A cotto
Conf6rence. Bien ontondu, nous souhaitons qu'ils y trouvont
do nouveaux outils leur pormottant do r6soudre, do fagon
plus efficace, los problbmos sciontifiquos difficilos,
rencontr~s dans le cadre do lours activit~s
profession nollos.

Les Organisateurs.



FOREWORD

The present volume contains the texts of the oral
communications presented at the Ninth International
Conference on Computing Methods in Applied Sciences and
Engineering.

The proceedings of this Conference demonstrate the
evolution undertaken by scientific computing during these
last years :

1/ At the methodological level

An increasing use of vector and parallel machines
implying the necessity of redefining numerical algorithms
and softwares in view of computations on these new
machines.

2/ At the application level

The solution of complicated problems on hypersonic flow,
microelectronic, quantum chemistry, combustion, space
station programs...

3/ At the applied mathematical level

The development of new methods, such as wavelets, whose
field of applications is steadily necessary, thanks, in
particular, to the interaction taking place at scientific
meetings, such as the present one.

We hope that the participants will benefit from the
communications presented at this Conference and will
have the possibility of communicating directly with the
speakers and other specialists of the field. We also hope
that these scientists will find new tools allowing them to
solve with more efficiency the difficult problems they
encounter in their professional life.

The Organizers
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HYPERSONIC FLOW SIMULATIONS USING DSNC

James N. Moss
NASA Langley Research Center

Hampton, VA 23665-5225

Abstract

A review of the direct simulation Monte Carlo (DSMC) method of Bird is
presented. The DSMC method provides the capability of simulating real gas
flows in the rarefied flow regime. Recent developments and applications of
the method for hypersonic flows are reported for both ground-based tests and
during entry. Results obtained using both axisymmetric and
three-dimensional codes are included.

Nomenclature

c velocity
cr magnitude of the relative velocity (speed) between two

molecules
CD  drag coefficient 3
CH heat-transfer coefficient, 2 q/p.V.
Ci  species mass fraction
CL lift coefficient
C* p*T-/p-T*

f normalized velocity distribution function in velocity space
FN  number of physical molecules represented by each simulated

molecule
Kn Knudsen number, A/k

2Kr Cheng's parameter, p-RN/.V.C*
t characteristic dimension
LID lift-to-drag ratio
n number density

n nondimensional density rise in shock wave,

(P - Pl)/(P2 - P)
N number of simulated molecules in a computational cell
p pressure
q heat flux
RN nose radius
t time
At flow time step
T temperature
VC  volume of computational cell
V. freestream velocity
x,y,z Cartesian coordinates
a angle of incidence
6 shock wave thickness
q coordinate normal to body surface
A mean-free path
Pviscosity
p density
o total collision cross section
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Abbreviations

AFE Aeroassist Flight Experiment
ASTV Aeroassisted Space Transfer Vehicle
DSMC direct simulation Monte Carlo
FM free molecular
HASP National Aero-Space Plane
NTC no time counter
TSS-2 Tethered Satellite System - 2
VHS variable hard sphere
VSL viscous shock-layer

Introduction

With the comm~itment of several nations to expand the current space
transportation capabilities through the use of transatmospheric winged
vehicles and aeroassisted space transfer vehicles (ASTV's), attention is now
being seriously focused on the aerothermodynamics of vehicles at very high
altitudes. In this rarefied flow regime, the molecular mean-free path in
the gas becomes significant when compared with either a characteristic
distance over which important flow-property changes take place or when
compared with the size of the object creating the flow disturbance. Since
the flow is hypersonic, the flow disturbance that envelopes the space
vehicle will be-a nonequilibrium flow; that is, one in which
nonequilibriuml 2 exists among the various energy modes (translational and
internal), the chemistry, and radiation3-5 for the more energetic flows.
For such flows, the shock-wave thickness is significant6-9 (shown in Fig. 1
is the location in altitude-velocity space where the shock wave 6s is 10
percent of the shock standoff for a 10-cm nose radius), and the flowfield
disturbance created by the vehicle is very much larger than that experienced
under continuum flow conditions. At the surface of the vehicle, the
gas-surface interactions are very important10-11 as they significantly
influence the aerodynamic forces and heating that the vehicle experiences.

To describe such flows, one must acknowledge the discrete nature of the
flow. Because of the limitations of the continuum description, as expressed
by the Navier-Stokes equations, to simulate rarefied flows and the
difficulties of solving the Boltzmann equation, which acknowledges the
discrete nature of the flow, direct physical simulation methods have been
developed over the last three decades for modeling rarefied effects. These
developments have generally been concerned with the direct simulation Monte
Carlo (DSMC) method12-17 and, to a lesser extent, with the Molecular
Dynamics method. 17-18  The direct simulation Monte Carlo (DSMC) method of
Bird is the most used method today for simulating rarefied flows in an
engineering context. The DSMC method takes advantage of the discrete
structure of the gas and provides a direct physical simulation as opposed to
a numerical solution of a set of model equations. This is accomplished by
developing phenomenological models of the relevant physical events.
Phenomenological models have been developed and implemented in the DSMC
procedure to account for translational, thermal, chemical, and radiative
nonequilibrium effects. The present discussion will review the general
features of the DSMC method, the numerical requirements for obtaining
meaningful results, the modeling used to simulate high-temperature gas
effects, and applications of the method to calculate the flow about various
configurations under hypersonic low-density conditions. Results obtained
using both axisynmmetric and three-dimensional codes are included.
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Rarefied Hypersonic Flows

A wide range of engineering studies associated with current and
projected space vehicles are concerned with the aerothermodynamics of
low-density gas flows. Flows of particular interest can arise from
interactions between two or more of the following events: the vehicle
itself, the ambient atmosphere, exhaust plumes from upper stage motors or
control motors, and other emitted gases from material outgassing and
waste gas venting. Studies concerned with these interactions are receiving
added impetus by the Space Shuttle Orbiter flights, the commitment of
several nations to pursue the goal of transatmospheric flight with
hypersonic slender vehicles, space experiments, technology demonstration
programs such as the Aeroassist Flight Experiment (AFE) vehicle and the
Tethered Satellite System-2 (TSS-2), the projected space station, and
aeroassisted space transfer vehicles (ASTV's). (See Fig. 1.) On-orbit and
high-altitude flight applications occur under conditions where the effects
of rarefaction can be very significant in terms of the development of the
flowfield structure that envelopes a vehicle or spacecraft and the momentum
and energy transport to its surface. The degree of rarefaction is
conventionally expressed through an overall Knudsen number defined by

Kn = Qt (1)

where A. is the mean free path in the undisturbed gas and % is some
typical dimension of the flow. Bird I has suggested that a more precise
quantification of rarefaction effects should be based on a local Knudsen
number defined as

Kn = (A/a) (8a/ax) (2)

where A is the local mean free path, x is a linear dimension, and a is a
macroscopic flow variable such as density, velocity, or temperature. When
the value of the local Knudsen number approaches 0.1, the continuum
formulation as modeled by the Navier-Stokes equations becomes suspect, since
the Chapman-Enskog expressions for viscosity, heat conduction, and diffusion
coefficients are in error. In fact, the Chapman-Enskog expressions become
virtually unusable when the local Knudsen number exceeds 0.2. The ranges of
validity, in terms of local Knudsen number, of the equations that describe a
gas flow as a continuum or as a set of discrete particles are shown in
Fig. 2.1

Even though the Boltzmann equation is the classical formulation for
describing a gas as a set of individual particles, this equation has
remained Intractable to analytical and conventional numerical solution for
space-related applications. Applications have been largley restricted to a
perfect monatomic gas where the flow is steady and one dimensional. The
restriction to relatively simple flows Is primarily due to the computational
requirements of any numerical method that has to work in phase space. The
addition of chemical reactions would mean that the Boltzmann equation would
be difficult to formulate, let alone solvel Futhermore, almost all
space-related applications involve flows with at least two spatial
dimensions and a three-dimensional distribution function in velocity space.
This leads to a five-dimensional grid, and direct numerical solutions can
hardly be contemplated.
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Because of the limited prospects of direct numerical solutions of the
Boltzmann equation for practical space applications, an alternate approach
has been developed. The alternative to a formal numerical solution is to
take advantage of the discrete structure of the gas and conduct a direct
physical simulation of the flow using the computer. The DSMC method is such
an alternative, and is the method today that is most readily applied to
hypersonic flow problems in the transitional flow flight regime, that is,
flow problems bounded by the continuum and the free molecular flow flight
regimes.

DSMC Method

The DSMC method 12- 15 is a technique for the computer modelling of a
real gas by thousands of simulated molecules. The velocity components and
position coordinates of these molecules are stored in the computer and are
modified with time as the molecules are concurrently followed through
representative collisions and boundary interactions in simulated physical
space.

For a simple dilute gas, the assumptions used in implementing the DSMC
method are consistent with the assumptions underlying the nonlinear
Boltzmann equation

a(nf)
at + c 9 V(nf) = L(f,f), (3)

where f(c, t, r) is the molecular distribution function, 'r the position

vector, t the time, c = (u, v, w) the particle velocity, and n(',t) the
macroscopic particle number density. In equation (3) the left side is the
particle movement or convection operator, and L(f,f) is the collision
operator representing changes in f due to binary collisions between
molecules. In DSMC no actual use of equation (3) is made, and the phase

space (i.e., r, ') information is carried directly by an ensemble of a few
thousand sample molecules. These simulation particles or molecules exist
within a framework of cells and at any instant are assumed to represent a
sample from f within the phase space being considered. Starting from some
initial configuration, DSMC computes the evolution of the sample ensemble
through a sequence of discretized time intervals j At (where j = 1,2,...).
Under certain conditions on At, the two sides of equation (3) may be
decoupled, and each may be simulated alternately in the time sequence.
During the convection simulation, each particle moves in a free trajectory
in At and interacts with any boundary encountered according to prescribed
boundary strategies. For the simulation of the right side of equation (3),
a statistical interpretation of L(f,f) leads to a simple algorithm for the
calculation of sample collisions during At in each of a set of spatial cells
which represent the spatial component of phase space. Statistical estimates
of the macroscopic fluid properties or the surface properties (pressure,
etc.) represent the "solution" to the flow problem and are obtained by
averaging the contributions of individual particles as they pass through
cells or strike the body surface during the calculation.

The assumptions of a dilute gas (mean spacing between molecules is much
larger than the mean particle diameter) and molecular chaos are common to
both the DSMC method and the Boltzmann equation. The consistency between
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the two was demonstrated at an early stage of development 19 through the
derivation of the Boltzmann equation from the DSMC method, and the
relati nship between the two has since been investigated in some detail by
Nanbu.H0 The objective of the simulation should be to obtain a valid
physical model of the real gas flow, and while this is generally equivalent
to a solution of the Boltzmann equation, the DSMC procedures often go beyond
the limitations of the Boltzmann formulation. For example, simulations have
included some dense gas effects21 such as ternary collisions. Morever the
method is routinely applied to problems involving chemical reactionsl -A and
to a lesser extent problems with thermal radiation.3-5 These effects are
also beyond the current formulations of the Boltzmann equation.

Computational Aspects

The principal computational tasks associated with the DSMC method are
movement of the molecules, indexing molecules into cells, molecular
collisions, and sampling of flowfield and surface quantities. (See Fig. 3.)
The molecules used in the analyses are simulated molecules, each of which
represents a very large number (on the order of 1015) of physical
molecules. Thus, scaling the density by a very large factor has the effect
of substantially reducing the number of molecular trajectories and molecular
collisions that must be calculated. Remember, however, that the physical
velocities, molecular size (diameter or cross section), and internal
energies are preserved in the simulation.

Another major aspect of the DSMC method is the uncoupling of the
molecular motion and molecular collisions. The validity of this dichotomy
is assured by requiring that the computational time step be small when

compared with the real physical collision time [At < (nocr)-1]. In
addition to the time discretization, a cell structure is required for two
purposes: first, the selection of potential collision pairs and second, the
sampling of flow properties. The simulation becomes more exact as the cell
size and time step tend to approach zero.

The cell dimensions must be small in comparison with the scale length
of the macroscopic flow gradients. The simulated molecules in the cell are
then regarded as representative of the real molecules at the location of the
cell, and the relative location of the molecules within the cell is
disregarded in the selection of collision partners. It is well established2

that the cell size must be small in comparison with the local mean free path
in regions of large gradients. For problems with large density variations,
the use of variable cell sizes assists In resolving the flow gradients and
also minimizing the computational requirements provided that the flow is
steady. Since the flow is always calculated as an unsteady flow starting
from some initial specified state (usually a uniform freestream or vacuum),
any steady flow becomes the large time state of the unsteady flow. For
boundary conditions where the flow is steady, the overall computational
effort can be substantially reduced by subdividing the flowfield into an
arbitrary number of ,in:is (regions) where the time step At and the scaling
factor FN (the number uf physical molecules represented by each simulated
molecule) remain constant within a region, but can vary frum region to
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region. Of course, such simulations are not time consistent solutions, but
they provide steady state solutions with a substantial reduction in
computational requirements. The combination of subdividing the flowfield
into regions along with the use of variable cell sizes provides the
flexibility to substantially reduce the total number of molecules used in
the simulation and also resolve the flow gradients. Recall that in the DSMC
method of Bird, the procedures are specified such that the computational
time is linearly dependent on the number of molecules.

There is some lower limit on the number of simulated molecules per cell
because the cell-sampled density is used in the procedures for establishing
the collision rate. It is desirable to have the number of molecules per
cell as large as the order of ten. The other function of the cell besides
sampling is the selection of collision pairs. During this process, it is
desirable to reduce the mean separation distance of the collision pairs
(pairs are selected without regard to position within the cell) and thereby
minimize the smearing of gradients. Bird15 has recently addressed this
requirement by introducing the option of subdividing the sampling cell into
an arbitrary number of sub-cells for the selection of collision pairs. The
sub-cells are chosen to contain on average two or three molecules, so that
all collisions approach the "nearest-neighbor" ideal. Should there be only
one molecule in a sub-cell, the potential collision partner is selected from
an adjacent sub-cell within the cell. With this procedure, the molecular
sampling is still done on a cell basis, while the collision pairs are
selected within the sub-cells. The computing time penalty associated with
these additional procedures is negligible.

The basis for much of the comments on the DSMC method have centered on
the way in which a representative set of collisions are selected for each
cell at each discrete flow time step At so that the appropriate collision
frequency is maintained. Prior to 1988, the collision sampling technique
that had been recommended by Bird 12 was the "time-counter" method where
advantage is taken of the fact that the computational time is linearly
proportional to the number of molecules. The collision pairs are accepted
with probability proportional to the product of the magnitude of the
relative velocity r and the total collision cross section o. [This is
accomplished by normalizing the crO product by the maximum value that has
ever occurred within the particular cell and then using an acceptance -
rejection procedure (see Appendix D, Ref. 12) to accept or reject the
collision pair that was selected at random.] For each collision pair
selected, a "cell time" is advanced by

2/(N <n> a cr) (4)

for a simple gas (see page 121 of Ref. 12 for the corresponding expression
for inverse power law molecules), where N is the number of simulated
molecules in the cell, and <n> is the time-averaged (steady flow) or
ensemble-averaged (unsteady flow) number density in the physical flow.
Sufficient collisions are calculated to keep the cell collision time
concurrent with the flow time.

In Ref. 17, Bird introduces a replacement for the time-counter method.
The new method is called the "no time counter" or NTC method, and he
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strongly recommends it for all applications. A problem with the
time-counter method is that the acceptance of an unlikely collision (one
with a very small value for OCr) can advance the cell time by an interval
that is much larger than the flow time step At and the overall collision
rate can be distorted. This is particulary true when the number of
simulated molecules N in a cell is small.

The NTC method is obtained by modifying the "direct" or Kac method. In
the direct method, all possible pairs in each cell are considered, and the
probability of collision within the time step is equal to the ratio of the
volume swept out by the cross section (moving with the relative velocity) to
the cell volume Vc. The disadvantage is that the computation time is very
nearly proportional to the square of the number of molecules. The direct
method can be modified by reducing the number of sampled pairs by some
factor and increasing the collision probabilities by the same factor. If
the factor is such that the maximum collision probability of any pair is
unity, the number of pairs to be sampled is

0.5 N <N> FN (a cr)max At/V c  (5)

and the collision probability for each selection is

(o cr) / (o Cr)max (6)

The selection criterion of equation (6) is identical to that used in the
time counter method. The only change with this method is that the number of
collision pair selections is given deterministically [Equation (5)3 rather
than probabilistically through the o9eration of the time counter. This
removes the undesirable correlation1  between unlikely collisions and
collision time intervals that can occur when the cell time counter is
advanced well beyond the current flow time.

Molecular Models

During the development and extension of the DSMC method, there has been
a remarkable increase in the gas complexity for which numerical simulations
are possible. The modeling has advanced from a simple hard sphere model to
models that include inelastic effects such as rotation, vibration, chemical
reactions, electronic excitation, and radiation. The routines used to
compute the molecular interactions may be exercised millions of times during
the course of a simulation, and it is essential for them to be brief. In
developing a model and its numerical algorithm, a careful balance has to be
struck between the realism of the physical representation and the
computational efficiency.

For mon toIc gases, the variable hard sphere (VHS) model is
recommended14 , for engineering calculations. This model was selected
based on the accumulated experience that the effects of molecular models can
be correlated with the variation of the differential cross section of the
molecules, which is a function of the relative veloLity in the collision.
The VHS model is essentially a hard sphere with a diameter that varies as
some inverse power of the relative velocity In the collision. This is the
simplest model that is capable of modeling the viscosity coefficient of real
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molecules. A discussion of the VHS model and its overall applicability
relative to other interaction models (both inverse power models to which the
VHS model belongs and models which incorporate long range attractive forces,
i.e., the Lennard-Jones (6-12), Buckingham exp-6, and Morse models) is given
in Ref. 22.

Reference 15 gives a brief summary of the modeling currently
implemented to describe internal degrees of freedom (rotation and
vibration), chemical reactions, electronic excitation, and radiation.
Reference 3 outlines in detail the modeling that is currently implemented
for describing the effects of partial ionization, electronic excitation, and
thermal radiation--effects that become important for very high entry
velocities such as experienced by ASTV's in the transitional flow regime.

Surface Interactions

As discussed by Harvey 22 , for most applications the distribution of
molecules reflected from engineering surfaces appears to correspond closely
to the diffuse and fully thermally accommodatedpattern. Evidence contrary
to this has been reportedB3 based on observations from upper atmospheric
flight measurements. These observa ion are now in question based on the
results of recent DSMC simulations.%4-26 The DSMC simulations show that
transitional effects persist at higher altitudes than had been assumed in
the interpretation of the flight measurements. As a consequence, it appears
that the aerodynamic characteristics can be explained in terms of a diffuse
interaction with full thermal accommodation when transitional effects are
included rather than resorting to a combination of diffuse and specular
interactions while assuming free molecular flow.

The effects of deviation from the diffuse model with full thermal
accommodation have been studied with DSMC calculations by applying the
Maxwell boundary condition--a linear combination of fully accommodated
diffuse and specular reflections--which is physically unrealistic.
Numerous attempts22 have been made to find more satisfactory ways of
predicting the gas-surface interaction which range from simple empirical to
complex quantum lattice models. In general, none of these models perform
well, and most are too complicated for inclusion in DSMC calculations.
Other than the Maxwell model, the only alternative that has been tested in a
simulation is a modification of the Nocilla drifting Maxwellian model. 11

Comparisons with Experiments

When the DSMC calculations are performed carefully (particular
attention is given to the numerical requirements of cell size and time step
and to the interaction modelling of the viscosity coefficient of the real
molecules), the m~thgj appears to yield results that agree yeig precisely
with experiments. 7-'J  For example, Harvey and associates2 -  have made
numerous comparisons between experiments and DSMC results primarily for
hypersonic nitrogen flows where internal translational energy exchange is a
feature of importance. Results of comparisons for surface forces, heat
transfer, and flowfield profiles (density and rotational temperature) have
been reported for flow about sharp as well as blunt configurations.
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In Ref. 30, Fiscko and Chapman calculated the one-dimensional
shock-wave structure for argon and showed that the calculated shock density
thickness was in g9o agreement with the measured values of Alsmeyer.34 A
more recent study L-13 also investigated the shock wave structure of argon
(Mach 7) and helium (Mach 1.59, 20, and 25) flows using the DSMC method. In
these studies, the comparisons between calculation and experiment are done
at a very fundamental level in that the comparisons are made for the
molecular-velocity distribution function in the shock wave. The
measurements (Fig. 4) of the molecular velocities inside a hypersonic normal
shock wave, where the gas experiences rapid changes In macroscopic
properties, show a highly nonequilibrium molecular motion (translational
nonequilibrium) and a bimodal velocity distribution in the direction
parallel to the flow. For the experimental conditions, the DSMC method of
Bird provided accurate quantitative prediction of the molecular motion.
These calculations and comparisons with measurements represent an important,
detailed test of the DSMC method for elastic interatomic collisions.

Figure 4 presents a comparison of the ;alculated and experimental
velocity distributions at three locations (n denotes the fraction of the
density rise across the shock wave) within the normal shock wave. Shown are
the velocity distributions both parallel and normal to the flow for Mach 25
helium. Since the flow was produced in a free-jet expansion, the freestream
was not in equilibrium (temperature perpendicular to the flow was about
1.1 K while that parallel to the flow was 2.2 K), and this fact was
accounted for in the simulation. The calculated results shown in Fig. 4
used the "aitland-Smith intermolecular potential35 with a distance parameter
of 2.976 A and a well depth of 10.9 K. Similar results using the VHS model
for Mach 20 helium are presented in Ref. 31.

The previously cited comparisons are examples of recent efforts to
validate the DSMC technique by experiment. There have also been several
studies at hypersonic flight conditions where qualitative validation is
attempted by comparing with either limited flight measurements (Refs. 2, 25,
and 36,) or with continuum methods (Refs. 2, 7, 8, and 37-41) for moderate
to small Knudsen number flows.

Application of DSMC to Hypersonic Flows

This section will briefly summarize the results of five application
studies that have been performed at the NASA Langley Research Center using
the DSMC method. Four of the studies are concerned with flight applications
(blunt slender bodies, Shuttle Orbiter, TSS-2, and AFE) that correspond to
the conditions shown in Fig. 1, whereas the fifth has been conducted for
future comparisons with measurements performed in a hypersonic wind tunnel.

Blunt Slender Body Calculations

Flows about cylindrically blunted wedges (2-D) and spherically blunted
cones with body half angles of 0, 5, and 10' were calculated7-8 with the
DSMC method for entry conditions (V. a 7.5 km/s, altitude range of 110 to
70 km). For a nose radius of 2.54 cm, the transitional flow effects persist
below 70 km and are important in defining the heating to the leading edges
of slender vehicles such as NASP. This is demonstrated by comparing
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the DSMC calculations with continuum calculations using a viscous
shock-layer (VSL) method. Both the OSMC and VSL calculations include a
five-species reacting air gas model, a constant wall temperature of 1,000 K,
and a finite catalytic wall. Results from this study are presented in
Figs. 5-7. Figures 5 and 6 show the effect of the body configuration (2-D
versus axisymmetric) on flowfield composition and stagnation-point heating
rate. The extent of the flowfield disturbance is greater for the 2-D flow
than the axisymmetric case. This impacts the amount of dissociation in the
flow as is clearly demonstrated in Fig. 5 where the maximum atomic mass
fractions are shown for both configurations as a function of altitude.

The stagnation point heat-transfer coefficient as a function of Cheng's
parameter (p.RN/P.U.C*) is presented in Fig. 6 for both the 2-0 and
axisymmetric bodies. Qualitatively, the results are what one would expect:
an increase from the small value near the continuum regime to a value of
unity as the free-molecule limit is approached. For the range of freestream
conditions considered, the 2-D heat-transfer coefficient is always lower
than the corresponding axisymmetric value.

The continuum VSL calculations were made for the 5* cone using the
no-slip boundary conditions. Calculations at altitudes of 50, 60, 70, and
80 km were made with the overlap between the VSL and DSMC calculations being
70 and 80 km. Figure 6 shows the extent of the agreement between the two
methods for stagnation point heat transfer. The continuum results begin to
depart significantly from the DSMC data above 70 km, and the same is true
for drag, which is not shown. If slip boundary conditions had been used in
the VSL calculations, better agreement at the more rarefied conditions would
have occurred.

Even through the computed stagnation point heat-transfer rates differ
by only 15 percent at 70 km, there are significant differences between the
predicted flowfield structure along the stagnation streamline, particulary
downstream of the stagnation region. Figure 7 presents a comparison of the
density profiles along the stagnation streamline. With respect to the VSL
data, the DSMC calculations show that the upstream influence of the body is
more than three times that predicted by the VSL calculation. The
shock-layer thickness calculated with thq VSL method is only about two
freestream mean-free paths (A. = 9.OXIO-4 m) in thickness. The DSMC
results are qualitatively what one would expect, since a freestanding normal
shock wave is about five mean-free paths in thickness. (Note that the data
points shown for the DSNC calculation are only a partial set, particulary
near the wall.) The differences shown in the density adjacent to the
surface can be explained in part by the temperature jump (537 K) calculated
with the DSMC method and some differences in gas composition adjacent to the
wall.

Aerodynamics of Shuttle Orbiter

Accurate predictions of aerothermal loads during entry can be very
important for the design and development of hypersonic space vehicles. A
portion of the reentry for these vehicles takes place in the transitional
flow flight regime where the various nonequilibrium effects become important
in establishing the thermal and aerodynamic response of these vehicles. In
order to simplify the computational requirements, the aerothermal 4101s for
vehicles such as the Space Shuttle Orbiter are often approximated4 '' with

21



a flat plate at incidence for the free-molecular flow regime. For the
transitional flow regime, empirical approximations are normally used to
calculate these loads. 4 -44  It has been observed from the Space Shuttle's
flight experiments that measured values of lift-drag ratio are considerably
higher than the free-molecular flow calculations at altitudes of 160 km and
above where the flow regime was previously believed to be free-molecular.
This discrepancy was thought to be due to specular reflection of some
fraction of the molecules at the surface. As early as 1985, it was
recognized45 that transitional effects rather than specular gas-surface
interaction might be influencing the interpretation of the flight
measurements; however, no calculations were available to establish this
hypothesis.

Recent direct simulation Monte Carlo (DSMC) calculations24-25 of the
rarefied flow past flat plates at incidence were the first to show that the
transitional effects persist for the Space Shuttle Orbiter even at altitudes
(160 km and above) where the flow had previously been considered as
free-molecular. For the calculations of Ref. 25, two 12-m flat plates at
40° incidence were used to simulate the freestream Knudsen number of the
Space Shuttle Orbiter during entry. One plate had zero thickness, and the
second had a thickness of 0.5 m and a blunted leading edge (nose radius =
0.5 m). Both plates were 12 m in length, which corresponds to the mean
aerodynamic cord of the Shuttle Orbiter's wings. DSMC calculations were
made for an altitude range of 200 to 100 km at 7.5 km/s using a five-species
reacting air model.

The surface temperature is assumed to be constant along the surface and
equal to the wall radiative equilibrium value on the windward side
(evaluated with free-molecular heating and a surface emittance of 0.09).
Also, the wall is assumed to be diffuse with full thermal accommodation and
to promote recombination of the oxygen and nitrogen atoms.

Figure 8 presents the calculated lift and drag coefficients for the
flat plate as a function of freestream Knudsen number along with the
corresponding free-molecular results. These results show the expected
variation in the transitional flow regime. The drag coefficient increases
and the lift coefficient decreases substantially with increasing
rarefaction; both approach the free-molecular limit.

Figure 9 presents the lift-drag ratio as a function of freestream
Knudsen number for both plates. Even at a Knudsen number of 16 (altitude =
200 km), the lift-to-drag ratio has not attained the free-molecular value.
Results such as these have important implications for the interpretation of
flight measurements used to deduce aerodynamic coefficients under rarefied
conditions At altitudes of 160 km and above, the conventional
procedure 2-44t has been to interpret the flight measurements using the
free-molecular-flow calculations. Such procedures have been used to
establish what fraction of the gas-surface interaction is specular. As
the fraction of specular reflection increases, the lift-drag ratio also
increases for a given incidence angle. Since these two separate effects
both produce increased lift-drag ratio, interpretation of flight
measurements must account for the transitional effects.

Tethered Satellite Flowfield Characterization

The Tethered Satellite System-2 (TSS-2) is being proposed as a
cooperative effort of the National Aeronautics and Space Administration of
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the United States and the Agenzia Spaziale Italiana of Italy. For this
mission, the Shuttle Orbiter would be used to demonstrate a tethered
satellite system in a downward deployment and retrieval of a 500-kg, 1.6-m-
diameter spacecraft attached to the end of a 100-km tether. The tethered
spacecraft could reach downward into the outer atmosphere of the Earth to
altitudes of 130 km for TSS-2 and later perhaps to 90 km. One of the
objectives of the TSS-2 mission is to conduct hypersonic research In the
transitional flow regime.

Initial calculations using the DSMC method have been made by Wilmoth
46

for a 1.6-m-diameter sphere. Figures 10 and 11 show selected contours of
nondimensional density and temperature, respectively. These results are for
a 130-km altitude and a freestream velocity of 7.5 km/s. The gas is a five-
species reacting air model, and the wall temperature is constant at 350 K.
At 130-km, the freestream Knudsen number based on spacecraft diameter is
4.8. The flow is in the transitional regime, since the drag coefficient is
only 95 percent of the free-molecular value of 2.1. In addition, there is
negligible dissociation occurring at this altitude; however, there is clear
evidence of thermal diffusion (not shown) where the concentration of atomic
oxygen (from the freestream) decreases near the surface and the
concentration of the more massive oxygen and nitrogen molecules increases.
As discussed in Ref. 47, thermal diffusion acts to concentrate the heavy gas
in the cooler regions of the flow (adjacent to the surface). Calculations
such as these are useful in defining the range of flow parameters for which
measurements could be made. Furthermore, the potential flight measurments
would be useful in validating the computational tools.

Transitional Flow about the AFE

A side view of the AFE vehicle is shown in Fig. 12. The aerobrake is
an elliptically blunted elliptic cone raked off at the base and fitted with
a skirt-type afterbody. The three-dimensional configuration has a base
length of 4.25 m.

Figure 13 shows the computational grid used to simulate the 3-D flow
for the 120-km-altitude case. In this figure, both cells and subcells are
shown on the outer freestream boundary. (For the present three-dimensional
application, the cells are deformed hexahedra, and each cell is further
divided into tetrahedral subcells.) However, on the plane of symmetry, only
the cell structure is drawn for clarity. Only the forebody and the
experimental carrier are included in the calculation, since the solid rocket
motor is ejected during entry near 130 km.

Reference 26 describes in some detail the highly nonequilibrium flow
that surrounds the AFE vehicle at these high-altitude conditions (100 to
200 km) and the resulting surface pressure and heat transfer distributions.
The results of this study show that dissociation is important at 110-km
altitude and below (a five-species gas model was used) and that the flow
approaches the free-molecular limit very gradually at higher altitudes.
Even at 200 km, the flow is not completely collisionless. This is clearly
evident in Fig. 14 where the lift-to-drag ratio is presented at selected
altitudes for an angle of incidence of 0 (using the present coordinate
system shown in Fig. 12). Figure 14 also shows the calculated free-molecule
and modified Newtonian results, along with experimental wind-tunnel data.
The experiments were conducted at the NASA Langley Research Center Mch 10
air and Mach 6 CF4 (freon) wind tunnels using high-fidelity models.
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Clearly, the DSMC results approach the free-molecule limit very slowly at
higher altitudes, and even at an altitude of 200 km, the flow is not
completely collisionless. Prior to this study, it was generally
acknowledged that free-molecule flow existed for the AFE vehicle for
altitudes near the 150 km, but this study shows that the transitional
effects are significant at these altitudes and influence the overall
aerodynamic coefficients.

Figure 14 also contains the results of the Lockheed bridging formula
which empirically connects the axial and normal aerodynamic force
coefficients between the continuum and free-molecule limits. This is
accomplished with a sine-square function by assuming continuum flow at a
Knudsen number Kn. = 0.01 and free-molecule flow at Kn. = 10, which
corresponds to altitudes of 90 and 150 km, respectively. The bridging
formula results are plotted to show the general trend even though they are
erroneous for the conditions considered in the present study.

Rarefied Flow about a Delta Wing

In the study of Ref. 49, a general three-dimensional (3-D) DSMC code is
used to simulate a rarefied flow about a delta wing (Fig. 15). As shown in
this figure, the top of the wing is flat, the bottom is V-shaped, and the
edges are rounded with a constant radius, R = 0.0013 m. The shape of the
nose from the side view is elliptical although it appears sharp from the top
view. The origin of the coordinate system is located at the tip of the
nose, and the x axis is parallel to the top surface and is normal to the
base plane. The top surface is inclined 30° away from the freestream. The
vertical midplane (at z = 0) is a plane of symmetry; thus computations have
been made for half of the geometry. Figure 16(a) shows a perspective view
for the 3-0 computational grid used in this study, and Fig. 16(b) shows the
grid structure at the aft end. The body-fitted grid has a total of 5,280
cells.

The flow simulated in this study is a wind-tunnel experiment in which
the flowfield freestream conditions are T. = 13.32 K, V. = 1503 m/s,
M. = 20.2, and p. = 1.729 x i0-5 kg/m 3. Acc 8rding to the VHS collision
model (with Tref a 300 K, dref = 4.07 X 10-lu m, and the temperature
exponent of the viscosity coefficient of 0.75), the calculated freestream
mean free path and viscosity are 0.00159 m and 1.9 x I0-b N*s/m2 ,
respectively. Hence, the overall Knudsen number (based on the body length)
is 0.0159, and the freestream Reynolds number per meter is 14,000. The body
surface is specified to be at a uniform temperature of 620 K. Full thermal
accommodation and diffuse reflection are assumed for the gas-surface
interaction. Simulations are performed using a nonreacting gas model with
one chemical species (N2) while considering energy exchange between
translational and internal (rotational and vibrational) modes.

The computations are performed for a total of 9,000 time steps. A
stationary state was reached around 1,000 time steps, and after that,
flowfield samples are taken every other time step. Hence, the time-averaged
flowfield results presented in this study are based on sample sizes derived
from 4,000 samplings.

24

AM. ... .. ... . .~_ I m i m m l -- -



Figure 17 presents the density flowfleld contours along the symmetry
plane [17(a)] and at a cross-sectional plane located at the 80-percent cord
location [17(b)], and the same contour levels are shown in both parts. The
flowfield results are obtained at the centroids of the cells and hence do
not extend to the boundaries (one half cell from the boundaries).
Accordingly, the flowfield contours for the symmetry plane are actually one
half-cell from the symmetry plane. (See Ref. 49 for similar information
regarding flowfield contours of Mach number, various temperatures, and
surface quantities.)

This study represents one of the first applications of the 3-0 DSMC
method to a flow about a relatively sharp-nosed body. The computations
indicate that the leeside flow is attached, and the results will be comoared
with the leeside density profiles and total body measurements (Allegre5U and
his co-workers at CNRS in France) when available. Further computations
related to downstream effects are needed to have a better understanding of
the overall flowfield structure.

Future Research Activities

The previous examples of application of the DSMC method to hypersonic
external flow problems represent only a very limited portion of the wide
spectrum of current applications. Examples of other applications are
spacecraft contamination 51-52 resulting from the expansion of gases out of a
rocket nozzle, the study and characterization of pumping devices, 53-54 and
studies in materials processing55 concerning thin-film vapor deposition.
Because of the central importance of codes in predicting rarefied flows,
future activities will focus on developing codes that are computationally
more efficient and easier to use, improving on the existing physical
modeling, and performing experiments that can be used to validate existing
modeling or provide the data base essential for new models such as that
needed for gas-surface interactions and energy exchange mechanisms.

Efforts by a number of researchers are currently being made to
implement means of faster execution time while minimizing storage
requirements. A major problem of the DSMC method has been the large amounts
of computing time required for relatively simple problems. More attention
has recently been focused on ways of reducing the computing time, including
development of new algorithms that take advantage of current supercomputer
architectures.56-57 An approach that is currently being rrsjed by a number
of researchers is the application of pargllel processing .9 -5 Reductions
of up to tw lvefold using 16 processors5 and up to sixteenfold using 32
processors5y have been reported.

Most of the computational time required by existing DSMC codes is taken
up by the analytical geometry associ aed with the description of complex
flows. A new flow definition system9u Is under development that cuts this
time by a factor of twenty. Consequently, the potential for major reduction
in the execution time of the DSMC method is real, particularly with the
synergism associated with improved algorithms, vectorization, and parallel
processing.
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In the area of physical model development, Refs. 61 and 62 are examples
of recent studies concerned with the modeling of various physical processes
(energy exchange between the translational and internal modes in Ref. 61 and
the way in which electric field effects are modeled in Ref. 62). The needs
for experimental work in rarefied gas dynamics as it relates to DSMC
validation are reviewed by Muntz in Ref. 16.

Concluding Remarks

A review of the DSMC method with regard to what it is, the capability
that it provides for analyzing transitional flows, applications that focus
on hypersonic external flows, and current and future research activities has
been presented. Major accomplishments have occurred in the past five years
in developing the capability to predict highly nonequilibrium reacting
flowfields along with the effects of ionization and radiation. Considerable
efforts are now being focused on improving its computational efficiency and
on code validation. The preliminary results of both activities are
extremely encouraging as indicated in the present review. With more
efficient codes, the range of applications and problem complexity will
increase. Consequently, it is important that experiments be performed that
provide information from which various aspects of the DSMC method can be
validated.
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RECENT PROGRESS

IN REACTIVE FLOW COMPUTATIONS

B. LARROUTUROU

CERMICS, INRIA, Sophia.Antipolis, 06560 VALBONNE, FRANCE

1. INTRODUCTION

We report in this paper on some recent progress concerning a family of approxi-
mation schemes for the numerical simulation of a multi-dimensional flow of a reactive
perfect or real gaseous mixture.

All these schemes basically employ a second-order accurate upwind approximation,
using slope limiters in order to give an oscillation-free solution. Moreover, they operate
on any (and in particular on a possibly unstructured) finite-element mesh. Thus, these
schemes generalize for multi component flows the finite-element upwind schemes deve-

loped for a single gas by A. Dervieux and L. Fezoui [101, 1151, in the spirit of the MUSCL
(Monotonic Upwind Schemes for Conservation Laws) methodology of Van Leer [40].

The schemes improvements discussed below are in particular related to the coupling
of the mass fractions equations with the basic hydrodynamic equations. In particular,
we derive a family of schemes which have the property of preserving the maximum

principle (and in particular the positivity) for the mass fractions of all species in the

gaseous mixture.

The way this coupling between the mass fractions equations and the gas dyna-

mics equations is actually taken into account in the discrete approximation is based on
the study of a generalized Riemann problem for one-dimensional multi-component gas
dynamics; this Riemann problem is discussed in Section 2. Then Section 3 is devoted

to the discussion of the basic multi-component approximation schemes in one space
dimension, while the extension to multi-dimensional flows is described in Section 4.

These schemes have revealed to provide robust and accurate solutions of many
reactive flows at various regimes, ranging from highly subsonic (Mach number of the
order of 10- ') to hypersonic (Mach number of the order of 20) reactive flows, in simple

or complex geometries, and in two or three space dimensions. As an illustration we

present and discuss several numerical examples in Section 5.
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2. THE MULTI-COMPONENT EULER EQUATIONS

2.1. The equations

As a first step, we consider the one-dimensional inviscid flow of a non-reactive
mixture of N species El, E2 ... EN. The governing equations for this flow express the

conservation of momentum and of total energy and the conservation of mass for each
component. They take the form (see e.g. [431):

(pu), + (pu 2 + p). 0,
S+ [u(E +p). = 0 1 (2.1)

(pYk)t + (puYk)z = 0 for 1 < k <_ N,

where p is the mixture density, u is the mixture velocity (which is also the velocity of

each species, since we neglect here molecular diffusion), p is the total pressure in the

mixture, £ is the total energy per unit volume and Yk is the mass fraction of species Ek

(that is, pY is the separate density of species Ek, and E= Yk = I).

For the sake of simplicity, we first assume that each species Ek obeys the perfect

gas laws, and in particular has constant specific heats at constant volume and pressure
Cpk

C,,k and Cpk. We will also denote -Yk the ratio Yk =-k- , and Mk the molecular weightCvk

of species Ek. The total pressure p is then given by Dalton's law as:

N R
p = Y-VT, (2.2)

k=1 Mk

where R is the universal gas constant and T is the temperature of the mixture (the

same for all species). Considering that the N species may have different specific heats

of formation ho , we write the total energy E as (see e.g. [5], [22], [43]):

C = pYku + pYkCkT + pYkh) . (2.3)
k=1I

Since the temperature does not appear in the conservation relations (2.1), we can

eliminate it in (2.2)-(2.3) and consider that, in (2.1), the pressure p is given by the
following relation, which is deduced from (2.2)-(2.3) and Mayer's relation Mi(Cpk -

¢,)=R:

/ N
p--(--1) - p,, -2 pykh . (2.4)

k=1
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Here, -y is the local ratio of the specific heats of the mixture:

(Cpm~z 1:~ Yk Cpk EjYkC~&7ic

-Y = k - ( 2 .5 )
(Ct,)miriure Z:YkCvk EZYkC&

k k

Remark 1: In fact, several of the numerical methods presented below also apply to
mixtures of real gases. We will not consider this case in detail below, referring to e.g.

[12], [18], and in particular to [23] where a general presentation is given for mixtures
where the relation giving the total pressure has the form:

p=p( -ipu ,pY,) , (2.6)

which is in particular the case if all components in the mixture satisfy Boyle's or Mar-

riotte's law (see [231). 9

2.2. The Riemann problem

For the sake of simplicity, we will from now on restrict our attention to the case of
a mixture made of only two species E1 and E2; but all results presented below can be
straightforwardly extended to mixtures consisting of any number of components N.

Thus, we rewrite (2.1) as:

PU lU( + p )
rY, +1 u(Ep =0. (2.7)

PY2, ) t puY 2

System (2.7) can be rewritten in a simpler equivalent form. Simply denoting Y the
mass fraction Y of the first species and E the sum of the kinetic and thermal energy

per unit volume:
2

E= F - E PY ho, (2.8)
k--I

we get:
/Pu

PU Pu2 + P 0 (2.9)
E (E + p)

\pY / puY
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where the first equation expresses the conservation of mass for the mixture and has the
usual form of the continuity equation for a single fluid, and where:

P=(- )(E-Pu ) , (2.10)

with:

YC17 1 + (1 - Y)C272
= YC.1 + (I - Y)C 2  (2.11)

We will use the classical notations W and F for the vectors of the conservative variables

and of the fluxes:

pu FU W 2  PU p 2 + F F 2

W= ( =W) , F= (f7 )-. (2.12)w E = W3  ' = u(E +p) =  F 3 (.
\pY / W 4  \ PUY F F 4

Then, we have the two following simple results (which are shown in e.g. [1), 12],

[23]):

Proposition 1:
The flux vector F is an homogeneous function of degree 1 of W. e

Proposition 2:
If the specific heat ratio -fk of each species in the mixture satisfies the inequality.

7k > 1 , (2.13)

then the system (2.9) is hyperbolic. *

The proof of these results is straightforward. Proposition 1 simply follows from the

observation that - = 7 (W) is homogeneous of degree 0. And the assumption (2.13) is
needed in order to insure that 7(W) > 1 for any W since the last equality in (2.5) shows
that the local value of 7 is a linear convex combination of the 7k's.

Let us simply make precise here that the eigenvalues of the 4 x 4 Jacobian matrix
DF

A(W) = D are:

A,-=-u-c, A2 =u, ) =u, A4 =u+c, (2.14)

where the sound speed c has the usual expression:

c = f , (2.15)
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but with the local value (2.11) of y.

Remark 2: The developed expression of the matrix A(W) will be useful in the sequel.
A straightforward calculation shows that:

0 1 0 0

(3'3) u2 _YX (3-y)u -y-1 X2
A(W) (2.16)

) u3 - uH - uYX H - (7 - 1)u2  Yu uX2

-uY Y 0 u

where H = E +P is the specific enthalpy of the mixture, and where:
P

X = P C. 1C, 2(-Y, - -Y2) ]2 C C. 2(7 1 - 7 2 )T
I - 1 pFVC I + (1 - Y)C, 2]

2 = YC, + (1 - Y)C 2  (2.17)

Remark 3: It is sl w iai [23] that, for gases obeying Boyle's law, Proposition 1 still

holds; that is, the pressure p in (2.6) is then an homogeneous function of degree 1. *

Remark 4: Proposition 2 can also be extended to real gas mixtures. For a two-

component mixture, setting p' = pY and writing (2.6) under the form:

1 2 ,
P=P E--PU ,P,P) =p(e,p,p'), (2.18)

one can shcw that the system (2.9) is hyperbolic if the quantity

C2 = Pp + YpP, +PC- + P- (2.19)
P P

is always positive. The eigenvalues of the Jacobian matrix A(W) are then again given
by (2.14), with the sound speed c given by (2.19). Moreover, a particularly nice simpli-

fication arises when the homogeneity property holds (see Remark 3): then, the sound

speed again has its usual expression

= p (2.20)

the definition of -y being extended from perfect-gas mixtures to real-gas mixtures by the

following relation (which uses the partial derivative of (2.18)):

SP, + 1. (2.21)
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We refer to [23] for the details. e

Since system (2.9) is hyperbolic, it makes now sense to examine the Riemann

problem for this system. Introducing two states WL and WR, we consider the problem:

W,+F(W).=O for xElR, t>O,

W(x,O)= WL if X<0, (2.22)
WR ifX>O.

When trying to solve this problem, a first important question concerns the genuine

nonlinearity or the degeneracy of the characteristic fields (see [24]). As in the single-

component case, the answer is here that the first and fourth characteristic fields are

genuinely non linear, whereas the characteristic fields associated with the eigenvalue u

are linearly degenerate (see [23]). Exactly as in the case of the single-component Euler

equations, it is then possible, by analysing the shock or rarefaction waves associated

with the non linear characteristic fields to completely solve the Riemann problem (2.22)

for any left and right state WL and WR. Referring to [1], [2], [23] for the details, we

simply describe here the structure of the solution of (2.22).

This exact solution W' is of course self-similar (i.e. W7(x, t) only depends on the

ratio -), and consists, as in the single-component case, of four constant states W(l),

W(2 ), W(3), W( 4 ) separated by shocks, rarefaction waves or a contact discontinuity.

More precisely, as shown on Figure 1, W(j) = WL and W(2) are separated by a wave

associated with the first characteristic field, that is with the eigenvalue A1 = u - c,

either a 1-shock or a 1-rarefaction wave; W(2) and W(3) are separated by a contact

discontinuity (associated with the eigenvalue u); W(3) and W(4) = WR are separated

by a 4-wave, associated with A4 = u + c. Also, the pressure p and the velocity u

are continuous across the contact discontinuity. Last but not least, the mass fraction Y

remains constant across the 1-wave and the 4-wave (whatever these waves are, shocks or

rarefactions) and only varies accross the contact discontinuity. This fact has important

consequences. Indeed, y is constant on each side of the contact discontinuity. Thus,

on the left side of the discontinuity the mixture has the composition of the state WL,

and behaves as a single perfect gas whose specific heat ratio is 7tL = -f(WL). Analogous

conclusions hold for the right side of the contact discontinuity.
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Figure 1: The solution of the multi-component Riemann problem (2.22).

For a E R and t > 0, we will denote o; WL, WR) (or sometimes simply f(ot))

the value of WR(t, t), which is independent of t. We will need below the following

property of W:

Proposition 3:

For any states nL and WR, the following equality holds:

F'(W(O~~l = F'[W(0~' x YL. if F'[W(O 0) ,(223
F4(W(0)] = ~ 1~ YR if F1(VV(0)] < 0 . (223

Proposition 3 is proved in 1201, 121]. The proof essentially consists in showing that

F' [W(0)] and the speed of the contact discontinuity have the same sign.

Remark 5: Solving the Riemann problem (2.22) for real-gas mixtures, with the equa-

tion of state (2.18), is more difficult. If some convexity property is assumed for the

pressure law (2.18), one can again show that the first and fourth characteristic fields

are genuinely non linear, and the Riemann problem can be solved exactly (see [9], [311).

Without such an assumption, the genuine non linearity may fail, and there exists for

the moment no general procedure to solve (2.22). In all cases, one can show that the

characteristic field remains linearly degenerate, and that, in the exact solution of (2.22),
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the mass fraction Y remains constant everywhere except at the contact discontinuity

associated with the eigenvalue u (see [231). e

3. ONE-DIMENSIONAL MULTI-COMPONENT UPWIND SCHEMES

Let us now consider the numerical solution of an initial value problem associated
with system (2.9):

W 1+F(W) =O for xER, t>O, (3.1)
W(x,O)=W°(z) for x ER.

We will restrict our attention in this section to explicit, three-point, first-order accurate

schemes written in conservative form. In other words, using very classical notations, we

consider numerical schemes of the form:

W -+I- W7 04+1/2 - Oj-1/2A j + - AX = 0, (3.2)
At + Ax

where the numerical flux 0,+ 1/2 is evaluated using a "numerical flux function" 4:

0j+1/2 = 1D(W,W'+,) . (3.3)

(we write Oj+1/2 instead of 0'+/2 for simplicity).

The knowledge of the numerical flux function 4I defines the scheme under consi-

deration. Below, we will consider two types of flux functions, based on approximate

Riemann solvers (also known as Godunov-type schemes) and on flux-vector splitting

techniques.

3.1. Multi-component approximate Riemann solvers

In this section, we will consider two well-known existing approximate Riemann
solvers which have been developed for the single-component Euler equations, namely
the Roe and Osher approximate Riemann solvers, and present for each of them two

different generalizations to multi-component problems, which we will refer to as the

fully-coupled and the weakly-coupled generalizations. We will conclude the section by

discussing the relative merits and drawbacks of both extensions.
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3.1.1. The fully-coupled multi-component Roe scheme

The extension of Roe's scheme [29] to the two-component system (3.1) has been

derived in [1] and [10]. The two-component numerical flux function has the form:

"D(WL, WR) = F(WL) + F(WR) +1 AI(WL-WR) (3.4)
2 2

where A = A(WL, WR) is a diagonalisable matrix satisfying Roe's property:

F(WL) - F(WR) = A(WL - WR) , (3.5)

and where the matrix J[ is defined as follows: the diagonalisation of A being writ-

ten as A = TAT with A = Diag[pl,p 2 ... n], we set AI= TIAIT - with Al =

Diag[lpl 1, 1 21 ... IfLuII.

To construct this matrix A, one introduces the state W = ( k , E,)T known

as "Roe's average of WL and WR"; this state is defined by the relations:

_UL r "+ URv _P HL "P + HRVr'R (3.6)
V + 'P VrP-i + 'rP

as in the single-component case, and:

.1 L VL +- }R /PR (3.7)

VrL + PR

(determining 0 is not necessary). But in this two-component context, unless both species

in the mixture have the same specific heat ratio -tj = -f2 (that is unless -y = "f(W) is a

constant), the flux Jacobian matrix A(W7V) evaluated at this Roe-averaged state W does

not satisfy property (3.5). Therefore, the matrix A is to be chosen different from A(WV)

(but close to the latter since we want the extension to reduce to the usual Roe scheme

when both species are the same). The result given in [1], [10] is the following:

0 1 0 0

(' - 3 f2 -- fC (3 - f)lfi - 1 )

A =, (3.8)

( H-41)- 1) 3-,H + - fl---H )0 f f,

-0 f
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where -- .(l), but where X is not equal to X(W) given by (2.17): in order to insure

that (3.5) holds, one has to choose (we refer to [1] for the detailed algebra):

C. I=.CC2 (71 - 721T (3.9)

1I + (1 - }')C.2 '

with:
T = TLV/P + TRa/j4 T(W). (3.10)

v,r + v-'

3.1.2. The fully-coupled multi-component Osher scheme

The extension of Osher's scheme [28] to multi-component flows is straightforward

(exactly in the same way as we have seen in Section 2.2 that the extension of exact

Riemann solvers is straightforward), and has been done by Abgrall and Montagn6 [2].

The extended scheme is defined by the numerical flux function:

4~WLWR-F(WL) + +1R WR
RWL, WR) + A(W) I dW, (3.11)

2

where the integration is carried out on a path connecting WL and WR in the state-

space. As in the single-component case, the integration path is piecewise parallel to

the right eigenvectors of the flux Jacobian matrix A, and the evaluation of the inte-
gral in (3.11) relies on the knowledge of the Pemann invariants associated with each

eigenvectors. These Riemann invariants are given in e.g. [2], [23], and the problem of
evaluating the integral in (3.11) has many similarities with the analogous problem in

the single-component case, since Y (and therefore -t) is constant along those pieces of

the integration path which are parallel to the first or to the last eigenvector. We refer

the reader to [2] for the details.

3.1.3. The weakly-coupled multi-component Roe and Osher schemes

This weakly-coupled extension, proposed in [20], [21], is based on the property
(2.23) of the exact solution of the multi-component Riemann problem (2.22).

In order to introduce it, let us first recall that in the Godunov-type scher-.es, the
numerical flux 4' ,+1/2 is seen as an approximation of the flux F[W(0; Wj, Wj+ 1 )] of

the exact solution of the Riemann problem constructed with the neighbour states Wn

and W'+,. One even has the equality, j+1/2 = F[W(O,W,W"+)], in the original

Godunov method [19].
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With this idea in mind, we define the weakly-coupled multi-component extension

as follows. The first three components of bi+1/2 (that is, the density, momentum and
energy discrete fluxes) are evaluated using a classical single-component scheme (Roe or
Osher scheme), with a "frozen -y". This means that, for the evaluation of the first three
components of Oj+1/2 at time t', one uses the flux of the usual (i.e. single-component)

Roe or Osher scheme computed using a frozen value fj+1/2 = 7 (Y +Ylj).

Beside this, one evaluates the fourth component of the numerical flux from the
following relation, which mimics (2.23):

o41/ , f if 0j+1/2 > 0,
12 +1/2 x Y if 0;+,/2 < 0. (3.12)

Beside its simplicity, this approach has the major advantage of preserving the
maximum principle for the mass fraction. The result shown in [21] is the following:

Proposition 4:

Under the following CFL-like conditions:

At [max(+/ 2,O0) min(<O+, 2,O 1 0) 1
ax (313)

the weakly-coupled multi-component schemes defined above preserve the maximum
principle for the mass fraction Y: for all i and n > 0:

minYP < Y' < maxY 0 . * (3.14)
I I

The proof of Proposition 4 essentially relies on the fact that weakly-coupled schemes
use the same discrete mass fluxes for all discrete mass conservation equations (the

continuity equation aiid the species equation).

Remark 6: It is even shown in [211 that the one-dimensional weakly-coupled multi-
component Roe or Osher schemes preserve the mass fraction monotonicity. It is also
observed there that condition (3.13) is not more restrictive than the usual CFL condition
when an upwind scheme is used to evaluate the first three components of Oj+1/2. *

3.1.4. Fully-coupled versus weakly-coupled multi-component schemes

Several detailed comparisons between the fully-coupled and the weakly-coupled
approaches have been carried out, for both Roe and Osher schemes, in one or two space
dimensions (see [6], [71, [211). As one could expect, these comparisons have shown that:
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Eq9

* The weakly-coupled approach gives more accurate values for the computed

mass fractions Y. In particular, the fully-coupled approach does not always

preserve the inequalities 0 _< Y < 1: computed mass fractions values between
-5.10 - 2 and 0, or between 1 and 1.05 are sometimes obtained with the fully-

coupled schemes.

* The weakly-coupled schemes are easier to implement and cheaper than the

fully-coupled schemes. This is particularly true for Roe scheme when the number

N of gaseous species in the mixture is large, since the fully-coupled Roe scheme
then involves N + 2 x N + 2 matrices.

* When -y does not actually depend on the mixture composition (that is,

if both species have the same specific heat ratio 7 = 72), the fully-coupled

and the weakly-coupled schemes exactly give the same results for the computed

hydrodynamical variables p, u, p. On the opposite, when 7 genuinely depends on

Y, the computed values of the hydrodynamical variables p, u, p are slightly less

accurate with the weakly-coupled Roe scheme than with the fully-coupled Roe
scheme. This could be expected since the former approach uses a frozen "y for

evaluating the "Euler fluxes" 0,,,,, whereas the latter takes the variations

of -f into account (the partial derivatives a . appear in the matrix A (3.8)).
However, this drawback of the weakly-coupled approach vanishes with a slight

modification of the scheme (aiming at taking the variations of "y into account in

the evaluation of the Euler fluxes instead of using a frozen "Y; we refer to [61 for

the details).

Therefore, the weakly-coupled method, which has both advantages of being cheaper
and of preserving the maxinmum principle for the mass fraction, should be preferred to

the fully-coupled approach. This is in particular the case without any modification of

the computation of the Euler fluxes in those cases where the specific heat ratio 7 is
constant (which, as said above, happens if 7- = 72, but also if the variable Y, instead of

being the mass fraction of a species in the mixture, represents any other quantity which
is simply convected by the flow).

3.2. Multi-component flux vector splitting

The best-known flux vector splitting techniques developed for the single-compo-

nent Euler equations, namely the methods of Steger and Warming [341 and of Van Leer

[41] have been extended to multi-component mixtures in [23]. Since the extension of

the Steger and Warming splitting is straightforward (because the multi-component flux
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vector is still an homogeneous function of the conservative variables, as in the single-

component case), we will simply consider here the differentiable flux vector splitting of

Van Leer.

As in the single-component case, the numerical flux function of the multi-component

Van Leer scheme has the form:

,D(WL, WR) = F+(WL) + F-.(WR) , (3.15)

where, for any W:

F(W) = F+(W) + F_(W) , (3.16)

and where F+ is defined by the following expressions:

*if U > c = /7 F+(w) = F(W);

* if-c < u < c,

4c

F+(W) = ()(3.17)
F+3 72 (F+2) 2

2(72 - 1) F.I

(the first three components of F+ have the same expression as in the single-

component case, but now with the non constant coefficient -f);

* if u : -c, F+(W) = 0.

As in the single-component case, we have here the property that if all characteristic
wave speeds associated with the state W are positive (resp. negative), then F+(W) =

F(W) (resp. F_(W) = F(W)). Moreover, the following result, which says that this

flux splitting can be used to define a stable conservative scheme, is proved in [23] (the

analogous result for the single-component case was proved in [41j):

Proposition 5:
If the specific heat ratio 7k of each species in the mixture satisfies the inequality

1 < yk < 3, then all eigenvalues of the Jacobian matrix DF+ ---- ) are real and
DW Dpositive (resp. negative). *

49



Lastly, we can notice that, exactly as the weakly-coupled Roe and Osher schemes
of the previous section, this multi-component Van Leer scheme uses for the discrete
species equations the same discrete mass fluxes F±1 as for the continuity equation. This
allows us to prove that this scheme also preserves the maximum principle for the mass

fraction (see [21] for the details):

Proposition 6:

Under the following CFL-like conditions:

At U < , (3.18)
Ax 2cj

the multi-component Van Leer scheme defined above preserves the maximum principle
for the mass fraction Y: for all i and n >_ 0:

min Y9 < Yi' :5 maxY ° . • (3.19)

4. EXTENSIONS

In this section, we briefly give an idea of how the above one-dimensional multi-

component upwind schemes can be extended to second-order accuracy, to implicit time-
stepping, and to multi-dimensional reactive flows. We refer to the bibliography for the
details.

4.1. One-dimensional extensions

4.1.1. Second-order accuracy

Starting from the previous first-order accurate schemes, the second-order spatial
accuracy is obtained by using piecewise linear variables instead of piecewise constant
variables, following the MUSCL approach of Van Leer [39], [40]. To obtain schemes

which are second-order accurate in space but remain first-order accurate in time, the

method involves three steps:

(a) At each time step, starting from the values W,", one first evaluates slopes

8i for all variables which are chosen to be piecewise linear. Several choices are
possible at this stage (for instance, one can choose either the conservative varia-
bles p, pu, E, pY or the "physical variables" p, u, p, Y to vary linearly in each
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computational cell; see [11]); here, we take Y (and not pY) as a piecewise linear
variable.

(b) Slope limiters are then used in order to avoid the creation of new extrema;
here again different strategies exist to evaluate the limited slopes (see e.g. [11],
[30], [32], [38], [39]). Essentially, the slopes are limited in order to avoid the
creation of new extrema, i.e. they are constrained such that, taking the variable
Y as an example, we have:

Ar
min K Y " ±- -s < max Yn. (4.1)

lj i:5 - a 2 ' Ii-ijS1 j

(c) The limited slopes are then used to evaluate cell-interface values Win1+ 2,±

AX AX
(one sets +1/2,-y = yi - 5''), and the solution is(one~ ~ set -,/, =2 s"+"si -/,
advanced in time according to relation (1.5), where we now take:

04 = (W +?1/2,-,Wi+1/ 2,+) (4.2)

This construction (a).(c) can be applied to any of the schemes presented in the

preceding sections, by using in (4.2) the corresponding numerical flux function CI. In
particular, it is shown in [21] that the result of Proposition 4 still holds: the weakly-
coupled second-order accurate schemes preserve the maximum principle for the mass

fractions, provided that limited slopes are used for the mass fraction Y itself and not

for pY.

The extension to a second-order time-accurate scheme can also be done in the usual
way using a predictor-corrector formulation (see e.g. [11], [15], [21]).

4.1.2. Implicit time-stepping

All the above described explicit schemes can be made implicit, following the lines

of [10], [17], [36] (these works deal with the single-component case). To give the idea,

one uses instead of the explicit formulation (3.2) the following (linearized implicit)
conservative formulation:

.+1-2 _ 2n+l

At Wj + AX -1/2 = 0 (4.3)

where the numerical flux " has the form:
On+1 O(Wn,, wn+) +0 .+ , +

j+1/2 -_=(Wn - Wn) + +--(W7+- W.+)% (4.4)

'W -+ S )j+I
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the quantities 0 and 0 being the Jacobian matrix (or an approximate Jacobian

matrix) of the numerical flux function $(Wj, Wj+ 1 ) (see [10], [17], [36]).

Since no particular difficulty appears in extending these implicit formulations from
the single-component case to the multi-component case (we refer to [13] for the implicit
fully-coupled multi-component Roe scheme, and to [18] for the implicit multi-component
Van Leer scheme), we simply add now some comments on the implicit weakly-coupled
multi-component schemes. For these schemes, (3.12) simply becomes:

S(yn+l if l,(+l4
4n-+ I ln+ 1 "i+1/2 0

041/2 = +1/2 x Y,-+ if (4.5)if 0'"'+/ 
< 

0.

Therefore the solution of a linear system is required at each time step to evaluate the
mass fractions Yi+'; it is shown in [21] that the matrix of this linear system is an
M-matrix (see e.g. [42]), and that the properties of the explicit weakly-coupled schemes

still hold here, without any restriction qipthe time step:

Proposition 7:
For any value of the time step At, the implicit weakly-coupled schemes defined by

(4.5) preserve the maximum principle for the mass fraction Y: for all i and n > 0:

min Y 0 < y.n < max Yjo . 0 (4.6)
J I

4.2. Extension to two-dimensional reactive flows

Let us now turn to multi-dimensional flows, with the description of diffusive and
reactive effects. To present this extension, we will consider the explicit simulation of a
two-dimensional laminar inviscid flow of a mixture of two reactive species El and E2

(the extension to three-dimensional flows and to viscous flows can be done along the
same lines; see [16], [32], [36], [37]). Thus, we consider the following system of equations:

p, + (PU)r + (pu) = ,

(pU), + (pU2 + p). + (puV), = 0
(pV), + (pt). + (p)2 + p), = 0,

Et + [u(E + p)] + [v(E + p)], = V.(AVT) + fl + , V.(pDC,,TVYk), (4.7)
k=1

(pY), + (puY). + (pVY), = V.(pDVY) + fly,
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with:
2

E= pYkC,,T + jp(U2 + (.2))
2 pyk RT(4.8)

P = E YR
I k=1-- Mk

Our notations are classical : u and v are the components of the mixture velocity ,

E is again the sum of the internal and kinetic energies per unit volume, A is the mixture
thermal conductivity, D is the molecular diffusion coefficient of species El. Lastly, the
source terms OlT and £ly represent the contribution of the chemical reactions to the

energy and mass fraction equations. We will assume below that the quantities A , pD,
Ck, and Ck are constant.

As said in the introduction, we consider mixed finite-element / finite-volume two-
dimensional extensions of the upwind schemes presented above, in the spirit of the

methods developed by A. Dervieux and L. Fezoui [10], [151 for a single gas (but of
course all above one-dimensional schemes can also be extended to structured finite-
volume multi-dimensional meshes). To make it precise, let us first rewrite system (4.7)-

(4.8) under the following form, separating the time-dependent, convective, diffusive and
reactive terms:

VW' + F(W)r + G(,W), = P(* ,'fv.) + Q(, IVV), + S (W), (4.9)

where:
wV( = (p, pu, pv, E, pY)T

F(W) = (pu, pu2 + p, puv, u(E + p),puY)T, (4.10)
60 G() = (pv,,puv, pv' + p,v(E + p),pvY)T,

2

/P(W,Z) = (0, 0, 0, AT + Z pDCkT(Yk )., pDY )T

k-1 kffil(4.11)

2
Q(W, W,) = (0, 0, 0, AT, + Z pDCkT(Yk)y, pDY,)T,

TenweSV) , (0, ST, 11fy)T. (4.12)

Then we introduce a (possibly unstructured) finite-element triangulation of the
computational domain. In order to derive a finite-volume formulation, we consider a

dual partition of the domain in control volumes or cells : a cell C is constructed around
each vertex Si by means of the medians of the neighbouring triangles, as shown on

Figure 2.
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Figure 2: The control volume C,.

Integrating (4.9) on the control volume C,, we get:

Wf + (vz+f[, (4.13)
)c ac. fc, Vl J)c

where 'i = (v', iv) is the outward unit normal on OCi. It now remains to specify how
the four integrals in (4.13) are evaluated.

The time derivative and source terms integrals are approximated using a mass-

lumped approximation:

f Iea(CC) S(WV") . area(C) . (4.14)

In addition to its simplicity, the mass-lumped approximation has two advantages: first,

it allows us to employ an explicit time integration scheme, which is no longer possible
when the consistent non diagonal finite-element mass matrix is used; moreover, the

mass-lumped approximation of the heat equation may preserve the positivity of the
unknowns, while a consistent finite-element formulation does not (see e.g. [8]).

Next, we have to consider the integral of the diffusive fluxes in (4.13). In view of
the definitions (4.11) of 5 and 0, this integral reduces to expressions like:

Jc VT.V , fci Y.-V , and Jc T Y.'. (4.15)
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To evaluate these terms, we consider here that the integrands are constant in each

triangle r of the triangulation. More precisely, we consider that, in a triangle r with

vertices Sj (1 <j 3), we have:

3 3

VTI, = E TiV4,i , VYj, = E YiVOj, (4.16)
j=1 j=1

where Oj is the P1 finite-element basis function associated to vertex Sj and, for the last

term in (4.15):
t 3

Trl,= Z Tj (4.17)
j=1

Then the diffusive term in (4) takes the value:

SrE() (4.1n)

where P, and Q, are the constant values of P and Q in the triangle r. It is easy to

check that (4.16)-(4.18) is equivalent to a classical P1 finite-element discretization of
the diffusive terms.

Lastly, we come to the approximation of the second integral in (4.13), which is

based of course on the one-dimensional multi-component upwind schemes presented in

the previous sections. Indeed, the system W1, + F(Wk) + G(Ik), = 0 is a nonlinear

hyperbolic system of conservation laws, which means that, for any (a,,6) E R', the

matrix a + #2- has five real eigenvalues:

{ ,= ou + Ov - Va2 +$IC
A2 = A3 = A4 = au + Ov , (4.19)
A5 = ou + '8v + V- +2

with c = , and a complete set of real eigenvectors. Thus, we can extend allSr

approximations defined in Section 3 for the one-dimensional flux vector F to the flux
vector aF + /3G (in other words, we use here the rotational invariance of the multi-

component Euler equations). For instance, given two values ,WL and IVR of I', and

a vector ' = (r7z,ry), we define a fully-coupled two-dimensional Roe numerical flux

function by:

4 A(W, WR, + fVR +{A,(w-) (4.20)
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In this expression, we have set ',(W) = q',(W) + qyd(W), and A, = A,(WL, fWR)
is a diagonalisable matrix satisfying Roe's property:

F,(wL) - ),(W,) = Aq(WVR - wL), (4.21)

(the matrix A, is deduced from A in (3.8)).

To evaluate the second integral in (4.13), we first write it in the form:

+ (Fv+Gvf) = E ja (Fvf + Gvf , (4.22)
C i~jEKMO ~

where X(i) is the set of neighbouring nodes of Si, and where OCi = OC n 9C,. Then,

defining the vector = (v-z,, zv',) by:

V= vFc , v?. Lj , (4.23)

2) fcii 1 3 fcii Vl

we obtain a first-order accurate upwind approximation of the convective fluxes (4.22)

by:
(F v W ,i) (4.24)

with 4 defined in (4.20).

This extension to two space dimensions can of course be used also for the weakly-
coupled schemes. Then, the first four components of 4(WI, Wii, Fii) are evaluated using

a single-component scheme (with -y frozen if need be), and the fifth component is given

by:

, 1Y, if 4'(f, w,,i)>0,
X I". if 4'(W,,W,,i) < . (4.25)

It is straightforward to check that this two-dimensional weakly-coupled method

still preserves the maximum principle for the mass fraction. Also, transforming a multi-

dimensional Euler code into a multi-dimensional multi-component code using (4.25) is

very easy and cheap.

We do not present in detail here how' the limited second-order extension of this

first-order numerical fluxes is derived. The main task in this derivation is to choose

the slopes limiters, a problem which is obviously less simple in the present context of
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two-dimensional unstructured grids than in one space dimension. We refer to e.g. [10],
[11], [151, [32] for more details.

5. NUMERICAL EXAMPLES

We now briefly present three different numerical illustrations of the above methods,
all dealing with two-dimensional reactive flows.

5.1. Flame propagation in a closed vessel

To show the ability of these methods to operate on unstructured triangulations, we
first consider two examples of flame propagation problems where adaptive highly non

uniform grids are used.

The first example is taken from [26], where a dynamic mesh refinement prodedure
is used to follow the propagating flame. Referring to [4], [25], [26] for the details, we

simply mention here the basic features of this adaptive procedure. It uses a multi-level
triangular finite-element mesh with a filiation hierarchy between two consecutive levels.
This procedure dynamically refines and unrefines the mesh, using refinement decisions

based on some refinement criterion. When the adaption routine is called, it starts from

an original coarse mesh, makes refinement decisions at that level (level 0), and creates
a new mesh (of level 1) by local element division; then new decisions are made on this

new mesh, and the mesh of level 2 is created, and so on...

We consider an experiment where a flame is ignited at the middle of the top wall
of a square chamber filled with a combustible mixture initially at rest, and propagates
downwards in the chamber. Figure 3 shows the five-level computational mesh and the

temperature contours at two early stages of the flame propagation (we refer to [26] for

more details on this computation).
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Figure 3: (from [26)) Unsteady flame propagation on a five-level dynamically
adapted mesh: triangulation and isotherms at two different time levels.
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The numerical method behaves well, although the original unrefined mesh is very
coarse, which makes the adapted mesh highly non uniform. One remaining difficulty,
which we are currently investigating, is that, although the (second-order accurate)
weakly-coupled multi-component Roe scheme of Section 3.1.3 is used for the convec-

tive terms approximation, the computed mass fractions of all species in the mixture are
not always in the interval [0, 1]. This is due to the (unavoidable) presence of obtuse
angles in the adapted triangulations, and of diffusive terms in the governing equations:
it is indeed well-known that the classical triangular finite-element approximation of the
heat equation is not positivity-preserving if obtuse angles exist in the triangulation [8].
We are therefore in the strange situation where we are able to preserve the mass fraction
positivity for the convective terms, but not for the dissipative terms...

The next numerical example, taken from [271, again concerns a flame propagating

in a closed vessel. Here, the physical parameters have been chosen in order to reproduce
numerically the so-called tulip flame instability which has been investigated experimen-
tally in [35]; in particular, the flame is now thinner, and the Mach number of the flow is
10 3 . Also, a different mesh adaptation procedure is used: we employ here the line-by-
line adaption algorithm of [31 (an example of the adapted mesh, corresponding to the
last but one time level of Figure 4, is shown on Figure 5; as one can see on Figure 4, this
pseudo-one-dimensional adaptive procedure is used only once the flame has reached the
horizontal walls of the rectyangular chamber). A second-order accurate fully-coupled
implicit Roe scheme is used in this conputation, where the tulip instability is actually
observed, in very good agreement with the experimental results of [351 (see [27]).

Figure 4: (from [27] Tulip flame instability: flame history (reaction rate contours
at successive time levels).
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Figure 5: (from [27]) Tulip flame instability: adapted computational mesh.

5.2. Hypersonic reactive flow with non equilibrium chemistry

Our last example, taken from [18], concerns an inviscid hypersonic flow around
a double ellipse, with non equilibrium air chemistry and vibrational equilibrium (i.e.
the equation of state includes vibrational terms). The free-stream Mach number is

equal to 25; we refer to [12], [18] and the references therein for the details. Figure 6
shows the steady-state Mach number contours, computed using a variant of the first-

order accurate multi-compolicrit Van Leer scheme of Section 3.2 in which an approach
using an "equivalent-,-y" is employed to define locally the parameter -f. This calculation
was made with two steady mesh refinements to cluster points in the detached shock
and canopy shock regions. Again, the upwind finite-element method proves to be very
robust, and oscillatory-free results are obtained.
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Figure 6: (from [1s]) Inviscid non equtilibrium air flow around a double ellipse.
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Abstract

This paper presents recent developments of the numerical tools used to simulate hypersonic
fluid flows motivated by the Hermes shuttle project. The approach relies on the use of un-
structured meshes combined with upwind approximations, especially the treatment of reactive
gas problems is emphasized. Numerical results in two and three dimensions demonstrate the
capacities of the methodology.
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1 Introduction

The design of a new generation of space vehicles such as the advanced space transportation
system (NASP) or the European space shuttle program (HERMES) requires the development
of eff. ient numerical flow solvers taking into account adapted thermodynamical and chemical
modelizations. During the atmosphere reentry of such vehicles at high velocity and at high
altitude, dissociation, ionization and excitation of internal energy modes of air have to be
considered. The gas is no more a perfect gas and thermal and chemical nonequilibrium models
have to be included in the set of equations. When the caracteristic times of these phenomena
are small enough compared to the fluid motion caracteristic time, all the processes are at
equilibrium with their reverse processes and in this case, one has only to replace the perfect
gas law by a general gas law.

The goal of this paper is to discuss the extension of an Euler flow solver developped in

the past [14] using unstructured meshes to handle equilibrium and/or nonequilibrium reactive
flow simulations. For perfect gas computations, we chose the Osher Riemann solver as upwind
scheme combined with an unstructured grid MUSCL-type approximation [4]. This solver has
proved to be very robust and free of any tuning parameters. Our aim is to keep these properties
for real gas simulations by deriving an adapted generalization of this scheme.

Recently, Abgrall and Montagni [1], Larrouturou and Fdzoui r3] have shown that for a
mixture of perfect gas components (conservation of mass of each component is expressed),
the computation of Riemann invariants (which is the keypoint to evaluate the numerical flux
with the Osher solver) is possible and is a straightforward extension of the single perfect gas
situation. The mixture constitution is only changed in the contact discontinuity and remains
constant along the first and third subpathes as well as the ratio of specific heats. Unfortunatly,
for a mixture of only thermally perfect gases (when specific heat coefficients are variables and
functions of temperature), no simple analytic expression of Riemann invariants is available.
Nevertheless, it seems reasonable to advocate the use of approximate Riemann solvers; this
approach has been investigated in [1] for chemical equilibrium flows.

This paper presents at first a possible generalized Osher Riemann solver for a mixture of
thermally perfect gases with nonequilibrium chemical assumption. Then, a simple generalized
Osher solver is proposed when chemical equilibrium is assumed. The following section recalls
the methodology of the basic Euler solver in which the generalized Riemann solvers will be
included. Numerical experiments in two aad three dimensions of hypersonic flow simulations
on adapted non structured meshes are presented to validate and illustrate the possibilities of
the reactive flow solvers.

2 Chemical non-equilibrium reactive flows

We consider a gas of mixture of N chemical species excluding ionized atoms or molecules and
electrons. In this section, we assume that chemical reactions are in non-equilibrium (what is
called Finite Rate Chemistry) and that vibrationnal excitation of molecules is in equilibrium
with the translationnal one, that means that the system is characterized by a single tem-
perature. At this point, we make no assumption on the use of possible algebraic equations
(conservation of atoms, of mixing proportions..) to reduce the number of species appearing in
the system of conservation laws. We intend to design an extension of the Osher approximate
Riemann solver to treat such a gas using similar ideas of the approaches referenced in the
introduction.
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2.1 Thermodynamic model

The conservation equations in 1-D are given as follows:

a a

a
+ (p) = 0

a±(P i + Z(p,) = 0i for i= 1,...,N- 1

where p denotes the density, u the velocity, p the pressure, e the total energy by unit volume,
, the mass fraction and the production rate of the ith species (i 1,..., N). We have the

identity & Y = 1.

In term of conserved quantities W, the flux can be written as:

m2

m -- +p 0

W; F(W) A ; O(W)=
Pe + P f

A1 J
where m = pu is the momentum and p =pYi is the ith species density.

We denote c the specific internal energy and 7 = pe the energy by unit volume:

12•e= pu + pe

So, let h be the total enthalpy by unit volume and A the specific enthalpy:

h = I + pA
2

The pressure is a function of density p, of specific internal energy e and of mass fractions Y1'

p = p(p, , (p,),=i....-I)

Considering a mixing of perfect gases, the relation between pressure, density and temperature
is given by:

N Yi

where 2 is the universal constant of gases, Mi the molecular weight of species i. The temper-
ature T arising in (1) is then computing by the following nonlinear expression of enthalpy:

N N
,h, + Y IC, (T) T

1=1 1=7
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or by
N N N

Y 1', ho, + i Y C;(T) T = f ,(T) (2)
i--1 ti1 i----

where ho is the formation enthalpy at temperature To, C, the specific heat coefficient at

constant pressure and C., at constant volume of species i.
We will denote in the sequel:

C.ZY,(T) and R=,RZX!
i=i=lm

The Jacobian matrix of the flux with respect to W can be easily computed. This matrix is

diagonalizable with eigenvalues u - c, u, u + c. The expression of the sound speed is found to

be

8p p _ P+ _ p, (3)

This expression can be simplified in the considered context by studying the partial derivatives.
N

[ = p(p,f,(p,),=,,...,N-1) = T i

N

Z = rjpifi(T) =
I i=1

N-I

By considering the identity PN = P - ip, these two equations become:
=1{p =- L + .f

= i =(4)
N-I

= pfN(T) + > p,(f,(T) - fN(T))
t=1

By deriving both equations (4) with respect to p, we get:

L_ pR-" + -Ta-p ap MR
8T _ -fN(T)
a p pc' 1

By deriving now both equations (4) with respect to Z, we obtain:

aT 1

and with respect to pj:

apj- ap + Wj W T

aT _ f -Il)
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If we insert these identities in the expression of the speed of sound (3), we obtain the simplified
equation:

We then notice that in the case of non-equilibrium chemical reactive gas, the expression of
the speed of sound leads to the definition of a coefficient i given by:

J+R

This relation can also be achieved for a general multi-temperature thermo-chemical nonequi-
librium system (see [10]). Furthermore, since temperature is an homogeneous function of W
of degree one, so is the coefficient j.

2.2 Flux Jacobian matrix properties

In order to simplify our study, we restrict the following analysis to the model that we will use
in the applications. The gas of mixture that we are interested in is dissociated air constituted
of five species 0, N, NO, 02 and N2 subject to chemical reactions. Mass fractions (Y)i=I,..
verify two algebraic relations; the first one is simply due to their definition:

i=I

already used in the previous section. As the air is supposed to be a mixture of 79% nitrogen
and 21% oxygen, the conservation of species gives the second relation:

-(L +- L-" + -- :I(' '+2YS MM 79 m2 ms is)

where mN is the molecular weight of the ith species.

The composition of the mixture is then entirely determined by the evolution equations of
mass fractions of three of the components. We will keep the equations corresponding to the
three first ones: 0, N, NO .

The Jacobian matrix of the flux has the following expression:

0 1 0 0 0 0

-u 2 +p 2u+p, P. Pp, Pp2 Pp3

-WdF(W) u(p, - h) h + up. u( + p.) up, Up, 2 Up,3
=W - -uY Y, 0 u 0 0

-uY Y2  0 0 u 0

-uY3 Y 0 0 0 u

where the partial derivatives of the pressure are given by:

p.=j -1 ; v =(-)

pli=-0 1) hi + C.,(T)T + (C.i(T)T) + _P T +R T.
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As said in the previous section, this matrix is diagonalizable with three distinct eigenvalues:

AI(W)=u-c, A,(W) =u (i=2,...,5) , Ae(W) = U +c

where c is the frozen speed of sound given by

C2 = i-
p

The right eigenvector matrix can be written as

I 1 1 1 1 1

U-c U U U U U+ C

R(W)= h -c h- = u
2 

U2 -
2 

- h+uc
Y1 Y, YI 0 0 Y1

Y2 Y2 0 Y2 0 Y2
Y3 Ys 0 0 Ys Ys

with =j-1 and Xi=p,+Yp-. for i=1,2,3.

2.3 Riemann invariants

Since the system of conservation laws is an hyperbolic system, it is important to determine
the property of each characteristic field (degeneracy or genuine nonlinearity). For that, we
compute the sign of the following quantities:

VAI(W).RI(W) = -c(, + 1)

VA,(W).R0(W) = 02,...,5

VAe(W)-IR(W) = - j+1)

We deduce from these quantities that the caracteristic fields associated to Al et As are genuinely
non-linear while those associated to the eigenvalues Ai for i = 2,..., 5 are linearly degenerated.
The variation of the eigenvalue A, (resp.As) along the associated path is monotone. It means
that only one sonic point at more exists where the sign of Al (reap. As ) changes.

A Riemann invariant associated to the ith eigenvector is a function 0 obtained by solving
the following equation:

W(W). R,(W) = 0 (5)

So, for the genuinely nonlinear fields, we respectively get:

+# a7 c) + -(h -uc + F_ Y 0

a~p ao o3a

T- +  "(U + C)+ (h+uc) + I YjT-;( j=lap

For i = 1 or i = 6, mass fractions Y are Riemann invariants, which can be easily verified.
For i = 2,... ,5, the velocity u and pressure p are still Riemann invariants as in the perfect
gas case. The other invariants have not an a priori analytic expression in the considered
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context. In the case where the specific heat coefficients C,, (and then Gp,) are constant (do
not depend on temperature), Abgrall and Montagn6 [1), F~zoui and Larrouturou [8) have
shown that the invariants can be computed and are the classic ones with the parameter j as
defined previously. Consequently, we will formally use in our case (where the specific heat
coefficients are functions of temperature) these expressions of Riemann invariants that are only
now approximate Riemann invariants. This choice is of course not at all unique but provides
simple expressions that will be used to define an extension of the Osher Riemann solver. This
approximation does not affect the consistency of the scheme. The expressions of the Abgrall-
Montagn6 Riemann invariants are given in Table 1.

u-c u u+c

p p

2 2 2
'PI 2+- tx 2 p 4p3 - c

Table 1: Riemann invariants

2.4 Extension of the Osher Riernann solver

To compute the flux separating two states W1 and W', Osher et al. III] proposed a numerical
flux function that can be written in a condensed form as

0 (W ,W') : [F(Wj) + F(W,)l - - fA(W)dW

where JAI = A + - A- .

Instead of using the exact path of the Riemann problem between W1 and W,, Osher proposed
a path consisting of two rarefaction waves (corresponding to the two genuinely non-linear fields)
and a contact discontinuity (corresponding to the linearly degenerated fields). For that, the
integration path between the two states W1 and W, is decomposed in three simple subpathes

r =r, u r 2 u r3

the director vectors of ri belonging to the eigenspace associated to the eigenvalue Ai . Eigen-
values can be ordered in two manners as u - c, u , u + c (natural order) or as u + c, u , u - c
(order adopted by Osher et al.). We will use hereafter the last one that leads to the following

parametrization:

" First subpath r, corresponding to a rarefaction wave is defined by dW(s) = R (W(s)).
ds

dW(s) s
" Second one r 2 is defined by ds -- =

i=2
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* and the last one Fs corresponding also to a rarefaction wave is defined by

d, = RI(W()).
da

We denote by W11 3 , W2 /s the intersection states of the subpathes (respectively intersection
of rI and r 2 and intersection of r 2 and 17s) and by WI and Ws the two sonic points i.e. the
points of lr (resp. rs) where AI (reap. As) are equal to zero. The integration over the subpathes
can be given in a simple form as follows.

" Along r2, the eigenvalue A2 = u remains constant equal to ul/s. The corresponding

integral is independent on the choice of parameters a and has the expression:

fIA(W)Idw = fw IA(W)IdW = Sign(W2 (W1 ,3)) [F(W2 ) - ]

" The contribution on subpath r, is given by:

fr 1A(W) dW = sign(Ae(W)) [F(WI) - F(WdI]+sign(Ae(W/s)) [F(WI,/s)- F(Wi)]

" The contribution on subpath rs is given by:

.IA(W)IdW = sign(A(W 2 /)) [F(W,) - F(W 2 ,s)]+sign(Ai(Wr)) [F(W..) - F(Ws,)]

The integral of the numerical flux function is at this point completely defined. We have
now to precise how to compute the different states WI/3, W 2 /3, W, and WS. For that, we

use the approximate Riemann invariants ,2s,3 defined previously and given in Table 1; since
they are assumed to verify (5), they remain constant on their corresponding subpath ri. The
following relations are found:

" For the wave corresponding to u + c

2 2
P / _I = U1/ 3___ -____ _-(6)

" For the wave corresponding to u - c

Pr = P2/s Y, = Y2/ ,.,, + 2 Cr = U2/s + 2 C2/3 (7)
=i ,ss YY 1 , u+-c=t 2 s'-- C,

P"" P2/3" &r1 '

" For the contact discontinuity, velocity and pressure remain constant which give the fol-
lowing identities:

U1 /3 = U2 /3 P1/s = P2/s (8)

We obtain at the end the following nonlinear scalar equation:

2c, il 2c , 2c 2c,

i - 1 2+7 Ur r + -

where = Pus
P7
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This equation has been already discussed in the previous work of Abgrall and Montagnd
[I] who analyzed adapted resolution methods. We solve it by adequate dichotomy. The other
unknowns are simple functions of x:

P11S - PIZLi'~ i
2IPs = \i P, 

uIl3 = ut- \Cs
-1U 2/ 3  = I/

P I/s = A Z il 1 1 Xl z l P / 3 = P I/s

Sonic points are determined by expressing the corresponding eigenvalue is equal to zero and
that Riemann invariants remain constant on the subpath:

U1 + 1 = 0 U3 - s:=

2 2 2 2

Pxi Al Ps P,
"ln PIT s Pr""

We notice that intermediate and sonic points are determined through density, velocity,

pressure and mass fractions. Temperature is then computed by the state of law. The last
quantity needed to compute the corresponding flux is energy which is determined by equation

(2).

3 Chemical equilibrium reactive flows

It is of interest in applications to consider the limit case of local chemical equilibrium assump-
tion. For many applications concerning the computation of reentry flow problems, this approx-
imation is valid. In this case, mass fractions are given by assuming equilibrium n(W) = 0.
We then have:

Y = Y,(p,pC) p = p(P PC

In order to connect the variables p and c to the independent variables p and e, it is of
common use to introduce the nondimension variables

1=+ -et PC2
Cp

We still have the relation
P = - 1)p

This coefficient is not equal to the ratio of specific heat coefficients of the gas. The speed of
sound c involved in the expressions of the eigenvalues u - c, u, u + c of the Jacobian matrix of
the system is given now by the differential formula:

C2 = a+
FP + (i +P ) 5PF

As in the nonequilibrium case, we intend to define an extension of the Osher Riemann
solver. We describe now in this case our approach
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The field associated to the second eigenvalue is still linearly degenerated with Riemann
invariants u and p. As in the previous section, we do not have analytic expressions of the
Riemann invariants of the first and third characteristic fields. To evaluate the integrals of the
Osher solver, we propose an approximate computation of them to define the path of integration
as previously. We choose to compute the Riemann invariants as the ones given in Table 1 with
the parameter i taken equal to (j(Wi) + i(W 7 ))/2. No nonlinear equation has to be solved in
this case. Intersection and sonic points of the subpathes are known through density, velocity
and pressure. In order to compute the corresponding energy, we assume that the parameter 7 is
constant along the first and third subpathes. In this methodology, we notice that the chemistry
routine which gives pressure and speed of sound for one couple of data (p,pe) is called only
twice at each flux evaluation i.e. for the states W 1 and W,.

4 Spacial Approximation

We present in this section the main features of a high order approximation of the two-dimension
Euler equations relying on an upwind formulation on an unstructured mesh in conjunction with
Total Variation Diminushing (TVD) properties. The extension to the three dimension equations
is straitforward.

Let T, be a triangulation of the computational domain D with boundary F. We can write
the Euler system in a conservative form such as:

aW-- + v. F(W) = n(W)

The complete formulation can be found in [4] and is based on a Green formula:

Find W, E (V,)"5  such as VN,, E Tg,

f, !W' - dx + ,F(W,). n9, da + c F(W,). nr da = f (W)dx (9)
*fl0 at' -ac P,nrdt

Rj de f F(W,) • nr das - ac,,nrF(W,) .ni do

where Vg = {V E C°(D) ; V, is linear on each triangle } and R, denotes the residual. The
cell C, is defined for each vertex N,, E T, as the union of the subtriangles which have N, as
vertex and result from the subdivision of each triangle of T by means of the median planes as
shown on Figure 1. The vectors n, and nr designe outward normals of respectively the cell
Cs, and the domain boundary F.

The scheme will be completely defined if we now precise which approximation is used to
compute the left hand-side integral in (9). In order to do this, the boundary aC,, of the cell
Cg, is splitted in panels aS,,,, joining the segment [Ng,, NJ,] to the centroids of the triangle
having N,, and N,, as common vertices.

Let us give the following notations :

F,j(w,) = F(W#). in. da and Pi,(W,) = aF (W9) - nd

An upwinding is introduced in the computation of the convection term through the numer-
ical flux function # of a first-order accurate upwind scheme by :

f F'(W,)- . .! = Op. (W~, W,I~ 0 n, du= -- ,, W

where W., = W,(N0,) and W#,= W(Np,)
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as,,

Figure 1: cell C

The numerical flux function used in this scheme is the Osher's approximate Riemann solver
[11] in the nonreactive case or its extension as described in the first two sections when chemical
effects are considered; this scheme has been chosen because of its robustness and its parameter-
free implementation. The numerical integration with the upwind scheme, as described previ-
ously, leads to approximations which are only first-order accurate. A second-order accurate
MUSCL-like [91 extension can be defined without changing the approximation space:

Find W, E (V,)' such that

f.. 8W, d.+ 0)+f F(W,)nr dofl(W ,) d (10)
,jEK(i) ,0,

where K(i) is the set of neighbours of vertex N,,, .nd H ! ) =-P,. (W,., W,,,).

The arguments W,,, and W9 ,, are values at the interface aSj i which have been interpolated
by using upwind gradients as described below.

We define the downstream and upstream triangles T,,, and T,,, for each segment [N,,, N,,]

as shown on Figure 2. Let the centered gradient be VWj, = VW, ITg where Tf, is one of

the triangles having N, and N,, as vertices.
A good procedure in term of accuracy is to use limiters on characteristic variables. We

compute these variables by the transformation taken at midpoint of the segment. If we denote
by II., the transformation matrix corresponding to Pj((W, + W,,)/2), then the values at

interface needed to compute the flux H ! ) are given by :

wgq = W,, + Iu Li ni l  --- Vw, IT,,, + 'VW,j N,, ,

where Lci, Lcij are the diagonal limiting matrices introduced to reduce numerical oscillations
of the solution and to provide some kind of monotonicity property. In all computations, we use

the Van Albada limiter [21 associated to Fromm scheme corresponding to sc = 0, combining a
certain monotonocity property and second-order accuracy [13].
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Figure 2: downstream and upstream triangles for the segment [Ni, Nil

Boundary conditions

Boundary integrals over r of (10) are computed in order to take into account the physical
boundary conditions.

* At inflow and outflow boundaries, the integral is evaluated with a flux-splitting applied
between exterior data and interior values of the solution.

" On the body, the slip condition is prescribed; the boundary integral can then be written
as a pressure integral term:

( 0

L,,F(W) .nr d=f P r Jd
OR.

where M); is a node on the body and Pi has to be determined.

In terms of Riemann problem, the boundary problem is under-defined since only the left
state (taken equal to W,.) and the wall speed are known. Nevertheless, it is easy to
verify that there is no 3-wave and that the contact discontinuity is confounded with the
wall [6]. The 1-wave can be either a shock (u, . nr > 0) or a rarefaction (ui. nr _< 0)
wave.

In case of perfect gases, the so-called 1/2-Riemann problem can be solved analytically
and allows the use of the Godunov flux.

To take into account reactive effects, we will use the modified Osher flux (§2.4) since the
apparition of a 1-shock wave would lead to a non-linear equation to be solved. Using
formula (7), we obtain:

A,=,,[- 'i- I u'-nr]
2 ' 

¢

5 Numerical treatment of source terms

Source terms R- are evaluated according to the model of 17 chemical reactions (dissociation
and exchange reactions) given in [12] and prescribed as bdsic model at the Hermes Workshop
[1.
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The source terms are treated implicitely in order to remove restrictive timesteps limitations
due to the chemical part. The scheme is written as

Wn + I - W. _ 1 1

At # aa(Ci) Rn + n(w, )

As in Ddsiddri et al. [31, the term f)(W"+ ) is linearized in the following manner:#j

n(W'n+) = n(w-) + -

which gives
,,l ,.,~ -At

(Id - At an(W))oW, 
= A R + At fl(Wn,)aw ara(c,,)

avec

8 wW, I - w,

This formulation leads to the resolution of a 3 x 3 system.

6 Numerical results

We present a set of typical computations obtained applying the methodology detailed below to
illustrate the capacities of the solver for both equilibrium and nonequilibrium real gas simula-
tions. For equilibrium flow simulations, we use the tabulated thermochemical model developped
by Vancamberg [15]. All the computations have been performed by an explicit four-stage time
steppinu scheme allowing the use of Courant number of 1.8.

The equilibrium flow solver is going to be validated in 2D during the Workshop [51 with
computations around a double ellipse and we only present here three dimensionnal experiments.
The first result presented is the computation of the inviscid with local equilibrium chemical
assumpt on around a forebody of the European space shuttle Hermes using the methodology
described above at a freestream Mach number of 10 and at an angle of attack of 300. The
iso-Mach number lines in the symmetry plane are diplayed in Figure 3 and 4. The two pictures
on each Figure correspond respectively to a computation on an initial coarse grid and on a final
one obtained after 4 successive adaptive refinements. On Figure 4, we can clearly notice that
the canopy shock is well captured on the final mesh. This shows that refinement is mandatory
for sucl computations to compute accurate solutions on reasonable grids. Then a computation
of equiL.)rium flow around the complete Hermes using the same methodology corresponding to
a freestream Mach number of 25 at an angle of attack of 30" and an altitude of 76000 meters
is presented. Two adaptive mesh refinement procedures have been successively applied based
on a cri- rion related to the gradient of Mach nmber. The initial surface mesh is presented
in Figur 5. The first mesh is made of 13770 nodes and 74659 elements and the final one of
27338 nodes and 146343 elements. Surfue iso-Mach number lines are shown on Figure 6 and
iso-Mach number lines in the symmetry vertical plane in Figure 7 for the solution obtained
on the final mesh. A comparison of the solutions obtained on both meshes is displayed on
Figure 8 and 9 through a presentation of the iso-Mach number lines in a horizontal plane
crossing the shuttle winglets. One can easily notice that adaptive nesh refinement has been
active in the winglet regions and ine the shock capture. The validation of the equilibrium
reactive gas solver has been performed by a numerical simulation of hypersonic flows around
an Aeroassiated Orbital Transfer Vehicle geometry for which an accurate numerical prediction
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of the aerodynamic moments is required for stability. The global final adapted mesh consists
of 9041 nodes and 45817 elements obtained after two refinement procedures corresponding to a
computation at Mach number of 10, no angle of attack and at 75000 meters altitude. Figure 10
presents the iso-Mach number lines in the symmetry plane and Figure 11 the pressure coefficient
lines. Maximum temperature at stagnation point is equal to 4246K.

We then present results concerning nonequilibrium chemical flows. The thermodynamic
condidered in these applications is the one proposed in the hypersonic Workshop [5] where
specific heat coefficients are given for molecules by

Cv,,(T) - 2 + exp (eIT) - 1

Firstly a validation of the solver is performed on a shock tube problem proposed by Montagn6
defined by two states at rest corresponding to a density of 0.066, a temperature of 4390K
on the left and a density of 0.030, a temperature of 1378K on the right. Results concerning
density, Mach number, pressure and temperature are presented on Figure 12. No oscillations
appear and the obtained solution is monotone. There is still some numerical dissipation when
compared with other available results revealed by the insufficient sharpness of the rarefaction
wave. This is certainly due to the limiting procedure which is applied on the primitive variables
and not on the characteristic ones. The pressure remains constant in the contact discontinuity
without any oscillation as it should be.

The computation of the hypersonic flow around a double ellipse has been performed with
the nonequilibrium flow solver. The considered case is the one proposed in the aforementionned
Workshop [5) at a freestream Mach number of 25 and at an angle of attack of 300. The two-
dimensionnal mesh made of 4257 nodes is shown on Figure 13. Iso-Mach number lines are
presented on Figure 14 (AM = .25). The two shocks are well captured but the spreading of
the upper part of the bow shock indicates the necessity of using adaptive refinement in this
region. Next Figures (15, 16 and 17) show the wall values of the mass fractions of species
produced by chemical reactions respectively NO, N and 0. We notice that along the wall
the amounts of 0 and NO are nearly constant. The mass fraction of N decreases along the
double ellipse wall and is weakly affected by the canopy shock. Wall values of temperature,
pressure coefficient and Mach number are displayed respectively on Figures 18, 19 and 20. The
temperature at stagnation point in less than 10000K. These results are in good agreement with

other available results, for exemple in [71; this is quite satisfactory because the mesh which is
employed is undeniably coarse.

7 Conclusion

This paper has presented an extension of an inviscid perfect gas flow solver to take in account
reactive real gases. Emphasis has been put on the capacity of the method to compute hypersonic
flows around 2D and 3D geometries. We have not at all addressed here the efficiency of the
solvers; development of implicit versions are under investigation.
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Abstract

Various techniques for implementing upwind flux-split schemes for the Euler and
Navier-Stokes equations on unstructured meshes are reviewed. The development of a space-
marching technique on hybrid structured/unstructured meshes is presented. In addition,
time integration algorithms on unstructured grids with an emphasis on convergence accel-
eration to the steady-state are compared. An m-stage Jameson style explicit Runge-Kutta
scheme is used as a baseline comparison. Implicit schemes discussed include a highly vec-
torizable skyline sparse matrix solver, hybrid explicit/implicit time advancement schemes,
and various relaxation strategies. Mesh adaptation techniques are also discussed. Results
in both two- and three-dimensions are presented including a supersonic inlet calculation
with complex wave interactions and a space-marching, inviscid simulation on an unstruc-
tured mesh about a high speed reconnaissance aircraft.

Nomenclature

a speed of sound
c mass concentration

D12 binary diffusion coefficient
e internal energy per unit mass

Eequilibrium portion of internal energy
en nonequilibrium portion of internal energy
e0 total internal energy per unit mass

en nonequilibrium energy production rate
F, G, H inviscid flux vectors
F,G, H,, viscous flux vectors
h enthalpy per unit mass

ho total enthalpy per unit mass

I identity matrix
J Jacobian of coordinate transformation
k thermal conductivity
L, U LU decomposition matrices

p pressure
q velocity magnitude
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- ,(w i N II__a

Q vector of conserved variables
R residual for time integration algorithms
t time
T temperature
U, v, u) cartesian components of velocity
i, f, b contravariant components of velocity
V cell volume
tb chemical production rate
W vector of production rates
a weighting coefficient
V(*) gradient(*)
A finite difference operator

dyn,,mic viscosity
a , r1, ( generalized space coordinates
| , ,), ( direction cosines

p density

Introduction

There has been a clear trend in recent years toward the development of algorithms for
computational fluid dynamic (CFD) simulations that have significant flexibility in mod-
eling problems with complex geometries and/or complex physics. This has led several
researchers away from structured (or logical) indexing schemes for addressing mesh ele-
ments to generalized indexing schemes frequently referred to as unstructured techniques
[1-71.

This paper discusses some of the research that has taken place during the past two
years at VPI&SU concerning algorithm development on unstructured and hybrid (struc-
tured/unstructured) grids for compressible flow simulations. Three primary areas have
been investigated and will be briefly discussed. They are: 1) implicit time integration
schemes, 2) mesh adaptation, and 3) space-marching methods on hybrid grids. The work
presented herein has been heavily influenced by contributions from many researchers in-
cluding, but not limited to, the efforts of A. Jameson, R. LWhner, P. Roe, B. Van Leer, T.
Barth, B. Stouflett, B. Grossman, and J. L. Thomas and their co-workers. In the authors
opinion, this work represents a combination of some of the best ideas presented by these
people.

The following sections provide a brief discussion of the governing equations considered
along with a descriptin of cell-vertex and cell-centered spatial discretizations. Various
time integrations schemes are presented and compared for a simple transonic test problem.
Results with and without mesh adaptation for a supersonic inlet are shown. Finally, results
from a novel space-marching method applied to a high speed reconnaissance aircraft are
discussed.
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Governing Equations

The equations of motion of interest in this paper are the full Navier-Stokes (FNS)
equations and subsets thereof including the Thin-Layer Navier-Stokes (TLNS), Parabolized
Navier-Stokes (PNS), and the Euler equations. The integral form of these equations may
be written in the common form:

aJJ QdV +j .,ids=JJ WdV()

where Q is the vector of dependent variables, W is a source term, and F -h represents
the flux of mass, momentum, and energy out of the control volume V through the sur-
face, S, with ii an outward unit normal vector from S. The algorithms discussed here
always directly discretize the integral form of the governing equations, but it is frequently
convenient for discussion purposes to rewrite (1) in the differential form

aQ a(F - F.) a(G - G) o(H- H )
at +  + C9 + a( -- (2a)

where

P2 U,2

PN 61N

Q = p= 0 (2b)
Pv 0
PW 0

pl en, pIn,, + e,,,tu'

pMenM PMmen + e.l, bAf
peo 0

For generality, a source term, W, due to chemical reactions and nonequilibrium thermody-

namics has been included. A thorough discussion of this formulation can be found in 18.
The common perfect gas form is a simple subset of this more general case. The vectors
F, G, H represent the inviscid and pressure terms and Fv, Gv, H, contain the shear

stress and heat flux contributions. As an example, for an N-species, finite-rate, chemically
reacting flow in which M of the species are considered to be in vibrational nonequilibrium,
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one may write

pli pD 12 c14

p2ii pD 12c 24

PN pDl 2CN(
___ i + fP IV1 2  puf + jq64 /3

j pwtii + 4~P pvC + My'$. / 3

P1enii pD12CICe., + k.,T1,

pMer, u pD2cIfenM + kM TM,
pfiho

where rq)(M N pir

= +2 kT + kn T, +p hD 2 ci,] +
2 E=1 3ijl i=1

and
q2 =u 2 +V2+w2

* xU( + 4(t + zWt

The other flux vectors can be written in a similar manner. In the above, some simplifying
assumptions have been made, e.g. the use of a binary diffusion coefficient as opposed to
a multi-component diffusion model. However, the particular choice of a chemistry and
thermodynamics model is up to the user. Discussions of various models and their practical
applications can be found in [9-10].

Spatial Discretization

An approach that has become popular during the past few years for discretizing
hyperbolic conservation laws is the so-called upwind technique in which the numerics at-
tempt to model the physics by differencing the characteristic information independently.
One advantage of such a formulation is the increased robustness of codes that incorporate
this technology, particularly in the high-speed regime. There are two general classes of
upwind methods, flux vector splitting (FVS) and flux difference splitting (FDS). Among
the FVS schemes, the Steger-Warming [11] and Van Leer [12] splittings are the best known.
Rue's scheme [131 is by far the most popular FDS technique. The splittings were origi-
nilly developed for the one-dimensional flow of a perfect gas and have been extended to
three-dimensional generalized coordinates and to thermo-chemical nonequilibrium flows by
several researchers including the author [c.f. 8].
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Upwind techniques can be implemented on structured, unstructured, or hybrid
meshes (i.e., grids that contain features of both). Both cell-centered and cell-vertex dis-
cretizations can also be developed and in a variety of ways. In this paper, only one
cell-centered approach and one cell-vertex method will be discussed in two dimensions on
a triangular mesh followed by a three-dimensional technique on a hybrid mesh. The latter
approach has found particular utility for high speed space-marching simulations.

The cell-centered method shown in Fig. 1 stores the dependent variables at the cen-
troid of each triangle, the edges of the triangle define the faces of the control volume.

Figure 1. Typical control volume for a cell-centered technique.

The cell-vertex scheme depicted in Fig. 2 stores the conserved variables at the ver-
tices of the triangles. The control volume is formed by connecting the centroids of the
triangles surrounding each vertex to the midpoints of the edges. This makes each vertex
the approximate cell center of the control volume created around it.

Figure 2. Typical control volume for a cell-vertex technique.
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It should be noted that these techniques can be applied to both triangles and quadri-
laterals in two-dimensions, and to tetrahedra and hexagons in three-dimensions and they
are independent of the manner in which the individual mesh elements and control volumes
are addressed (i.e. structured or unstructured). Moreover, these methods can be applied
to even more general elements and control volumes such as the one shown in Fig. 3.

-I1/2

1-1/2

Figure 3. Control volume on a structured/unstructured mesh.

For space-marching applications, one needs not only a direction for which the inviscid
field is entirely supersonic, but also a mesh that contains control surfaces which can be used
to march the solution in space. General three-dimensional unstructured grids do not inher-
ently contain such surfaces whereas it is easy to construct structured meshes that meet this
requirement. Thus, space-marching algorithms on structured meshes have been developed
and are popular because the computing times required for space-marching calculations
are much less than that required by standard global iteration techniques. However, the
requirement of a logical indexing scheme results in a loss of geometric modeling flexibility
which is a severe drawback of the structured grid techniques.

The control volume shown in Fig. 3 has been obtained by constructing a hybrid
structured/unstructured three-dimensional grid. It consists of two-dimensional unstruc-
tured triangular cell faces in each cross-flow plane which have been stacked together in
the streamwise (supersonic) direction thus giving rise to mesh elements that are five-sided
prisms. This grid can be used for developing space-marching methods since each plane
can be a surface on which the Mach number based on the local contravariant component
of velocity normal to all of the cell faces is supersonic. The advantage of such a formu-
lation is that it combines the increased numerical efficiency of space-marching algorithms
with the geometric flexibilty of an unstructured indexing scheme. One can also construct
other types of hybrid meshes for marching applications that use different elements to form
the base grid (e.g. tetrahedra) as long as surfaces can be constructed for advancing the
solution in the streamwise direction.
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With any of these discretizations, one may replace the integral form of the governing
equations by the semi-discrete approximation

V. ( = v.14w - 1_ Fi3 ,Asij _=- Ri (3)
at J---(i)

where (Qi) is the volume average of Q in the ith control volume, V is the control volume,
FiJ is the flux out of the element i though face j, Asij is the area of the jth cell face of
volume i, and K(i) is a list of neighboring cells.

In order to apply an upwind scheme, it is necessary to obtain two distinct fluid

dynamic states on each side of a cell face, frequently referred to as the left and right states.
For first order accuracy, the left and right states may be obtained by assuming a piecewise
constant distribution of the state variables within the control volumes. Thus, one simply
obtains the left and right states from the either the cell-centered or cell-vertex volume-
averaged values immediately adjacent to the cell face at which the numerical flux is sought
depending on the scheme employed.

In order to increase the spatial accuracy, a piecewise linear distribution of the data
may be assumed. From this reconstruction, more accurate left and right states may be
determined and their values limited in such a way that no new extrema are generated
in an effort to prevent spurious oscillations in the vicinity of discontinuities. This linear

distribution of the cell averaged flow variables can be represented by

Q(x,y ) = Q(xOYO) + VQ . F (4)

where F is the vector from the cell center (xo,yo) to any point (x,y) in the cell, and VQ
represents the solution gradient in the cell. Note that this equation is simply the first-
order accurate Taylor approximation plus a higher-order correction. For each cell, since
the solution gradient VQ is constant, it can be computed from

VQA = On dQ

where Sg is the area contained in the path of integration. For the cell-centered case, the

path chosen passes through the centroids of the cells B,C, and D which surround cell A,

as indicated in figure 4.

For the vertex scheme, the path connects the neighboring vertices B,C,D,E,F, and G
as shown in figure 5. Both paths ensure exact calculation of VQA when Q varies linearly.
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Figure 4. Integration path for cell-centered gradient calculation

Figure 5. Integration path for cell-vertex gradient calculation

One can consider a limited version of the linear function about the centroid of cell A

Q(z, y)A = Q(Xo, Yo)A + AVQA 'A, 4P C [0,11

In order to find the value of 'DA, a monotonicity principle is enforced on the unlimited
quantities QA. = Q(xi, Yi)A calculated in (4) at the faces of cell A. It requires that the
values computed at the faces must not exceed the maximum and minimum of neighboring
cell values including the value in cell A, i.e.,

mi" -< QA; < QA°0

where Q ', = min(QAQ,,eghor,) and Q': = max(QA,Qighhor,) 4b can now be
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calculated for each face j of cell A as

mrn (1, Q A ) , if Qj-QA>O

= Qr"_..QA) if Qj-QA<OmA rin 1,Qj _Q ]

I 1 if Q,-QA=O

with 'tA = min(4A, ), where j = (1), ic(2), x(3), ..., n(max). For a more in depth discus-
sion of this higher-order accurate scheme, see Barth [3].

Temporal Discretization
In order to obtain a steady-state solution, the governing equations must be integrated

in time. Seven time integration methods have been considered : a four stage explicit
Runge-Kutta, a four stage Runge-Kutta with implicit residual smoothing, point Jacobi,
point Gauss-Seidel, a block Gauss-Seidel type relaxation, a fully implicit LU decomposition,
and a hybrid scheme which combines Runge-Kutta and LU decomposition. Jameson style
Runge-Kutta is used here which can be written as:

Q(O) = Q(N)

QM = Q(O) + a t R(Q())

Q(2) = Q(O) + ,2 .tR(Q('))

Q(3) = Q(O) + ,3.AtR(Q(2))

Q(4) = Q(O) + a 4 vR(Q(3))

Q(N+I) = Q(4)

where R(Q) is the right-hand side of (3) and a are weights. Convergence to the steady-
state can be accelerated by using a local time-stepping technique in which the maximum
permissible time step for each individual cell in the flow field is used, as dictated by local
stability analysis. In addition, the Runge-Kutta scheme can be accelerated by applying
implicit residual smoothing at every stage of the time integration. Residual smoothing is
essentially a Laplacian filtering of the numerical values of the residuals. After every stage
a new value of the residual is obtained from

&, = Ri + CV2f?,

where Ai is the Laplacian filtered value of Ri. The undivided Laplacian, V2fRi, can be
represented on an unstructured mesh as:

V 2 
f, A A(,R)
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The resulting implicit equation for 1?i is solved here by Jacobi iteration. Typically, two
Jacobi iterations were performed with e = 0.5.

The point Jacobi, point Gauss-Seidel, block Gauss-Seidel, and LU decomposition
schemes that have been studied utilize the Euler implicit time integration algorithm as a
common starting point which can be represented in delta form as

V-A- = R N + I

A~t

where AQ = QN+I - QN. The equation can be linearized and written as

AAQ = RN

where

A V I-OR N

The matrix is generally large and sparse and has a variable bandwidth. The linear
system can be an approximate or exact linearization of the residual, R. Many relaxation
schemes for solving the linear problem rewrite A as

A =,M + D + N

where M is a lower triangular matrix, D is a diagonal matrix, and N is an upper triangluar
matrix. With a point Jacobi method, the block matrices on the diagonal are inverted and
multiplied by the right hand side to obtain

AQ = D-IRN

To implement a point Gauss-Seidel method, the off-diagonal terms of A are multiplied by
the current approximation to AQ and are subtracted from the residual. Point Gauss-Seidel
can be written for i = l,...,n as

S= D-!. R,'' - M,.Q(') -z
j=l "=i

The superscripts on AQ refer to the inner iteration number of the Gauss-Seidel method
on the linear system. Typically, AQ(0) is an initial guess for the Gauss-Seidel solver and
AQ(') is used to update QN to QN+1. Due to the recursive nature of the point Gauss-
Seidel algorithm, complete vectorization of this method is not possible. Point Gauss-Seidel
can be made symmetrical by sweeping through the list of vertices in the opposite direction
before updating Q. The symmetrical point Gauss-Seidel can be written for i = n, ..., 1 as

AQ 2) D7 ! RN - MijAQ ') - Ni,NQ(2)
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with AQ( 2 ) being used to update Q.
In order to perform the block Gauss-Seidel type relaxation used here, it is first useful

to renumber the cells to get as many of the elements of A as possible into tridiagonal form.
A typical matrix (associated with the transonic channel flow problem discussed later) is
shown in figure 6 for a 1005 element mesh. The matrix can be subdivided into several
subsections (denoted by the blocks) of variable length. A close up of the third section
shows the essentially tridiagonal form. Each subsection is then solved by

TAQ = R(QN, QN+I)

where T denotes a tridiagonal submatrix, and the residual becomes a function of QN and
QN+I. Since the blocks are independent of each other, the inversion of these submatrices

can be vectorized over the number of blocks. When the matrix A is divided into subsections
of variable length, a minimum allowable length is imposed. The inversion procedure is then
vectorized for the elements in every block up to the minimum number of elements allowed,
the remainder of the elements are then computed in scalar mode.

%%

Figure 6. Structure of the linear system and close-up of the 3", block

Once the tridiagonal matrices have been inverted, the values of AQ are solved for
sequentially over each section of the matrix A. The elements to the left of the diagonal on
a forward sweep (or the elements to the right of the diagonal on a reverse sweep) through
the matrix are included implicitly in the solution procedure. After the values for AQ of
a subsection are calculated, the residual for the next subsection is computed using these
new updated values resulting in a non-linear update of the residual.
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The LU decomposition method solves the linear system exactly. A renumbering
scheme (currently reverse Cuthill-McGee) is used as a preprocessor for the LU decompo-
sition. The solution procedure involves factoring A into the product of a lower triangular
and upper triangular matrix (L and U) such that

[LU]AQ = RN

and then the system LAQ* = RN is solved by forward substitution and UAQ = AQ*
by backward substitution. This procedure reduces to Newton's method as At -* oo, and
as a result it exhibits quadratic convergence to the solution of the non-linear system of
equations under certain restrictions. A simple change to this scheme which has proven
to be more efficient involves freezing the LU decomposition in time and performing only
forward and backward substitutions to advance the solution vector Q to the steady state.
This approach can be represented by

AQN+IC = _(U-1L1)N R(QN+K, QN+K+I)

where N represents the time at which the LU is frozen, and N + K is the current time
step.

It has been found that for many problems, a scheme involving the combination of
Runge-Kutta initially and LU decomposition with frozen decompostion elements as the
steady-state is approached is practical. During the initial transients, LU decomposition is
not efficient because the originial estimate of the solution is typically far from the steady
state solution and the work associated with the inversions at the onset cannot be justified.

Mesh Generation, Adaptation, and Graphical Interface

The procedure used for generating triangular elements about an arbitrary configura-
tion is an advancing front method discussed by LUhner (4]. This technique requires input of
stretching parameters a, 6, and s. The direction a denotes the direction of stretching, with
6 being the element size at right angles to a and sS being the element size in the direction
of stretching. These parameters are given in the context of a coarse background grid of
triangular elements which cover the solution domain. They are first used to place nodes
along the boundaries of the computational region. The sides connecting these nodes form
the initial generation front. Elements are added by interpolating the stretching parameters
from the background grid, the entire front is updated, and the process repeated. Once the
entire domain has been triangulated, a smoothing routine is performed to improve the
quality of the generated mesh.

The grid generation process described requires input of a background mesh and
stretching parameters. In general, a very simple background mesh with no streching is
input for computing the initial grid. The initial grid will then become the background grid
for the first mesh regeneration. This process requires utilizing a measure of the error in the
computed solution on the initial grid to obtain the parameters a, 6, and s. An improved
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mesh can then be generated with the initial grid as a background grid along with these
computed parameters.

If the density p is chosen as the variable used to determine the error, then an estimate
for the root mean square value of the local error can be given by

where hi is the local element size, and $ denotes the computed solution. A criterion for a
uniform value of the error over the entire domain would then be

hJl d I. -- constant

which suggests that the value 6 on the new mesh should be computed so that

Sd2 D3
6?i 11 -I11 = constant

For multi-dimensional problems, this approach is emplbyed in each direction separately.
This mesh regeneration procedure is generally performed several times in order to

obtain a well refined mesh in as little of CPU time as possible. At each remeshing stage the
solution on the old grid is interpolated onto the newly generated grid. This is accomplished
by simply using the values of the nearest point on the old mesh as the values at each
point on the new mesh. This is not conservative, nor is it extremely accurate, but it is
very fast, and the error introduced is dominated by high frequencies and hence will be
damped out quickly. It should be emphasized that though the intermediate interpolation
is not conservative, the solution on the final mesh will be conservative. This process
is repeated a fixed number of times before turning the remeshing off and converging the
solution to the steady-state on the final mesh.

It is very difficult to predict when and how many remeshing stages will be required.
Therefore, a graphics interface has been developed to allow the user to have a certain
degree of control in guiding the flow solver. For the purpose of portability, all of the device
dependent graphics subroutines have been separated from the main flow solver. Currently,
three separate graphic libraries have been developed: a Sun GKS, an Iris4D, and a DI-
3000 library. The DI-3000 graphics package is device independent and will work on any
computer with the DI-3000 software installed such as the NASA Cray-2 supercomputers
Voyager and Navier.

When the flow solver is implemented, the user has the ability to execute in either
automatic or interactive mode. If the automatic mode is chosen, the solver will execute
without user interaction. If interactive mode is chosen, the solver will pause for input just
before each remeshing step is to take place. The user then has the ability to view the
current solution and mesh, and then decide whether to remesh or continue computing on
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the current mesh. In this way, the user is able to guide the solver avoiding unneccessary
or premature remeshing.

Computational Results

Transonic Channel Flow

Convergence rates for an inviscid flow over a transonic (M., = 0.85) circular arc
in a channel on a 1005 element mesh for first order accurate cell-centered and cell-vertex
schemes are compared. Figr compares the norm of the residual versus Cray-YMP
CPU time for various time inwgration strategies using both a cell-centered and a cell-
vertex finite volume discretization. For the cell-centered calculations, the plot compares the
Runge-Kutta, the LU decomposition, the tridiagonal block Gauss-Seidel type relaxation,
and the hybrid Runge-Kutta/LU methods. Results are also given in this plot for both the
LU decomposition and the tridiagonal algorithms utilizing a frozen Jacobian matrix. The
results clearly demonstrate the utility of using the combined Runge-Kutta/LU strategy
over the other schemes.

For the cell-vertex calculations, the plot compares the Runge-Kutta, the Runge-
Kutta with residual smoothing, the point Jacobi, and the point Gauss-Seidel schemes.
The point Jacobi and point Gauss-Seidel methods also have the capability to reuse the
Jacobian matrices and to alternate the sweep direction. The fastest method in this case
is the symmetric point Gauss-Seidel method with Jacobian reuses. This method compares
similarly to the block Gauss-Seidel scheme from the previous plot. A more thorough
discussion of these and other convergence acceleration methods can be found in [7].

Supersonic Inlet

The purpose of this test case is to demonstrate the utility of remeshing for a problem
with complex wave interactions. Figure 8 shows the first order adaptive remeshing sequence
beginning on the initial 85 element uniform mesh (figure 8(a)) and finishing on the 4211
element mesh (figure 8(i)). The first few grids in the sequence develop the initial shock,
expansion and reflection and the latter remeshes better define these phenomenon. Figure
9 shows the higher order remeshing sequence which starts with the final first order solution
and ends on a mesh with 6247 elements. The higher order remeshes make a significant
contribution in refining all of the shocks, especially those toward the exit.

The remeshing strategy took approximately the same CPU time (700 sec) as the
solution computed on the 6263 element uniform mesh shown in figure 10. Since the adapted
mesh has more elements near the shocks, and since these elements are stretched in the
direction of the shocks, the pressure contours for this case display much better resolution
than the solution on the uniform mesh.
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Figure 7. Residual versus CPU time for a transonic channel flow.

Model SR71 Aircraft

As an example of the use of a space-marching method on a structured/unstructured
mesh-and to demonstrate the geometric flexibility of this algorithm, the solution about
a simplified model of the SR71 reconaissance aircraft has been calculated. This model
includes a region of multiple elements in the streamwise direction at the start of the
engine inlets, as well as multiple vertical tails. Both of these geometries cause difficulties
with a structured discretization, while they impose no restrictions with an unstructured
discretization. The solution was calculated in a Mach 3.5 free stream at a 00 angle of
incidence relative to the root chord. This solution was obtained on a grid with a total
of 42 cross flow planes. Figure 11 shows the structured nature of the grid on the surface
of the body and contours of pressure in the exit plane. Also shown are shaded pressure
contours along the body surface and exit plane along with the unstructured triangular grid
in this plane. It is noteworthy that this calculation has been performed on a wide range
of computers including an IRIS-4D graphics workstation since both the memory and CPU
time required by this approach are minimal. Other examples and comparison with both
theory and experiment with this space-marching method are presented in [5].

Concluding Remarks

The development of algorithms on unstructured and hybrid meshes for compressible
flow simulations has become a popular research subject in addition to the development
of the actual grid generators. This attention is due to the significant improvements that
are possible by these approaches. Rapid and robust three-dimensional grid generation
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(a) Mesh: 85 elements, 67 nodes (b) Pressure contours

zi-m

(c) Mesh: 453 elements, 268 nodes (d) Pressure contours

(e) Mesh: 2119 elements, 1140 nodes (f) Pressure contours

(g) Mesh: 3754 elements, 1980 nodes (h) Pressure contours

(i) Mesh: 4211 elements, 2219 nodes (j) Pressure contours

Figure 8. Grids and pressure contours from a 1"' order accurate remeshing sequence.
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(a) Mesh: 4211 elements, 2219 nodes (b) Pressure contours

(c) Mesh: 5714 elements, 3005 nodes (d) Pressure contours

(e) Mesh. 6247 elements, 3275 nodes (f) Pressure contours

Figure 9. Grids and pressure contours from a 2 nd order accurate remeshing sequence.

appears to be a primary topic requiring further attention although a few research groups

have demonstrated impressive results. In general, however, the CFD community does not

appear to have this technology well in hand although significant resources are now being
put into this effort. The flow solvers for unstructured meshes are progressing rapidly and

do not appear to be hendering the transfer of technology to the user community.
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Figure 10. Comparison of uniform and adapted meshes and pressure contours.
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Figure 11. SR71 surface grid, exit plane grid and pressure contours.
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SUMMARY We plan to show that the use of space-centered approxi-
mations can provide an accurate and efficient way to compute
compressible flows with shocks, even at large Mach and Reynolds
numbers.

First, we shall present the basic centered method we use for
solving the Euler equations. It is a 2 time-level implicit finite-
volume method which is conservative, second-order accurate and al-
ways linearly stable in any number of space dimensions. When applied
to transonic aerodynamics, it gives non-oscillatory solutions with
sharp shock profiles (over one or two mesh cells) - see Ill.

Then, we shall describe two modifications of this Euler
solver that we have recently investigated for the calculation of
hypersonic flows. The first one is the addition of a local entropy
correction 121 which preserves second-order accuracy and
unconditional stability. This correction enforces a discrete entropy
inequality at steady-state (proved for a multidimensional hyperbolic
system of conservation laws with a convex entropy, in a general
structured mesh). The second modification of the basic Euler solver
concerns the introduction of a third time-level to improve the
robustness of the method without altering the approximation at
steady-state.

Finally, we shall consider the extension to the Navier-Stokes
equations with a particular attention to stability and convergance
rate questions.

Numerical applications to hypersonic problems will be presen-
ted for inviscid and high Reynolds laminar flows.

Ill A. LERAT and J. SIDES - "Efficient solution of the steady Euler
equations with a centered implicit method", in Numerical Methods
for Fluid Dynamics III, K.W. Morton and N.J. Baines Eds, Clarendon
Press-Oxford (1988), p. 65-86.

121 K. KHALFALLAH and A. LERAT - "Correction d'entropie pour des sch6-
ms num6riques approchant un syst6me hyperbolique". C.R. Acad. Be.
Paris, 308 1I (19890, p. 815-820.
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2Tonsitn to turbulence

Abstract

We present unsteady numerical resolutions of 2D or 3D Navier-Stokes equations, in order to study
the transition to turbulence in various free-shear layers. The following cases are envisaged:

a) A two-dimensional mixing-layer with periodic boundary conditions in the flow direction (temporal

mixing layer). The numerical code uses finite differences methods.
b) Two-dimensional spatially-developing mixing layers, wakes and jets.

c) A two-dimensional compressible mixing layer.

d) A three-dimensional incompressible temporal mixing layer and wake (direct and large-eddy

simulations, pseudo-spectral methods).

In all the cases, turbulence develops from a random perturbation of small amplitude and
broad-band spectrum superpoeed upon a basic flow.

In the two-dimensional case, it is shown that the coherent structures develop from the Kelvin-
Helmholtz instability. They undergo successive pairings, are shown to be unpredictable, and possess

in the case of the mixing layer a broad-band spatial spectrum of slope comprised between k- ' and
k-4.

The compressible calculations show an inhibition of the instability above a convective Mach

number of 0.6, in good agreement with earlier experiments and calculations.
In the incompressible three-dimensional case, direct-numerical simulations at low Reynolds

numbers allow to show how hairpin vortices are strained longitudinally between the big rollers in
both cases of the mixing layer and the wake. High Reynolds numbers can be reached with the aid of
a spectral subgrid-scale eddy-viscosity. It is shown in this case that the above coherent structures

survive, and that the kinetic energy cascades towards the subgrid scales along a Kolmogorov k -
5/3

spectrum.

1 Introduction

In the study of turbulent free-shear flow*, there has been during the last 15 years a growing
interest brought to ceheerent structures, that is, structures having a recognisable shape for times

much longer than their turn-overtimel. These coherent structures exist in particular in mixing
layers (Brown and Roshko, 1974), where they appear as spiralling vortices 2 , jets and wakes (Perry

et al., 1982), They are extremely common in aeronautics, for instpnce after the detachment of a

boundary layer, or in separated flows. They play an important role in combustion, where they
determine the flame fronts, and in accoustics, they are largely responsible for the generation of

In my definition of the coherent structures, I require also that they should be unpredictable.

hereafter called Kelvin-Helmholts vortices
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noise. They are also found in the atmosphere (cyclonic or anticyclonic perturbations), in the ocean

(memoscale eddies), and in planetary atmospheres (Jupiter's Great Red Spot or Neptune's Dark

Blue spot). An important characteristic of these coherent structures is their highly mixing and

unpredictable characters: for these reasons they are an essential component of the turbulence.

More recently, another type of coherent structure has been discovered in free-shear flows,

namely threedimensional hairpin-shaped" longitudinal vortices (Breidenthal, 1981, Bernal and

Roshko, 1966). Thes structures seem to play an important role during the transition process to

small-scale turbulence.

The coherent structures have been first discovered in the experiments. However, the increas-

ingly fast development of computational fluid dynamics allows now spectacular progresses in the

understanding of the role and dynamics of coherent structures in turbulent shear flows.

2 The two-dimensloual free-shear layers

2.1 Numerical methods

We solve numerically in a rectangular domain the two-dimensional Navier-Stokes equation

D (1)VV2D= u'w'O

where

= -V 2 ,(, V,t) (2)

is the vorticity, and 0, the stream function of the flow. The D/Dt operator is the Lagrangian

derivative following the fluid motion, given by

D cl
3- = T-t + 4 ( ' 0 )  '(3)

where J (A, B) = (8A/8z)(BB/BpI) - aB/8z)(BA/ay) is the Jacobian operator. The initial basic

flow (in a periodic calculation) or inflow (in a spatially-growing calculation) may be a hyperbolic-

tangent velocity profile (mixing layer), a (I/cosh' y) profile (plane jet) or a gaussian deficit

velocity profile (wake). To thes profile, we superpose initially (in the periodic calculations) or at

each time step (in the spatially-growing calculations) a random perturbation of weak amplitude

(white noise), modulated in the V direction by a gaussian function of width &. In fact, this study

s Hairpin structures are also found in the boundary layer both during the transition to turbulence

(Klebanofet al., 1962) and in developed turbulence (Kline et al., 1967). They will not be considered

here.
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concerns both the natural transition to turbulence4 , and also the generation of coherent structures

in a developed shear-layer, due to the instability of the mean-velocity profile. Boundary conditions

at the lateral boundaries are of the free-slip type. Numerical methods consist of finite-differences on

a regular grid, and are described in Comte et al. (1988) and Comte (1989). The Jacobian in eq. (3)

is calculated using Arakawa's scheme, which conserves kinetic energy and enstrophy in the domain.

In the spatially-developing calculations, the outflow boundary condition is of the Sommerfeld type.

The diffusion of a passive scalar 0, called here temperature, is simultaneously studied. The

latter satisfies an equation analogous to (1)

D-8 = MV (4)Dt

where ic is the molecular diffusivity. The Prandtl number v/c will be taken equal to 1. The

initial temperature profile is identical to the basic velocity profile, and allows to visualize the flow

structures in the same manner as a numerical dye would do in the experiments.

Calculations are done here at Reynolds numbers (based on the initial vorticity thickness) of

1000 or 500. Notice that, in a previous study, we did also calculations where the dissipative term

PV2w in (1) was replaced by -, 1 V4w (see Lesieur et al., 1988). This modification is made

frequently in two-dimensional turbulence studies related to oceanography and meteorology, and

shifts the dissipative effects towards the smallest scales close to the calculation mesh Ax. However,

the results are not substantially different at the Reynolds numbers considered here, as far as the

coherent-structure dynamics is concerned.

2.2 Cohermt-structures dynamics

Before looking at the results of the calculation, it is of interest to recall the main results of the

linear-instability theory applied to the periodic free-shear flows. In a fluid of uniform density p0 ,

we consider the stability of a parallel flow of components 0l(y), 0,0 , upon which is superposed a

small perturbation. This perturbation is assumed to be two-dimensional in the (r, y) plane, with

a stream function i(x, y, t) of the form

j= e0 y exp a(z - ) ,(5)

corresponding.to a perturbed velocity field of components 6 = cj/f, = -at1b/8z, 0, with:

- d*u de7 exp ia(x -ct), 0 c ia(y) exp ia(z -ct) .(6)

e << I is a small non-dimensional parameter. a is real, and is the spatial longitudinal wave num-

her of the perturbation: this is a temporal asnasleii, by opposition to a spatial analysis where a

4 where the white noise models the residual incoming turbulence in an experimental apparatus,

which injects energy in all the unstable modes
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is complex. In this temporal study, c is complex, of real and imaginary parts c, and ci. ac, is

the phase-speed of the perturbation, while aci is its temporal-growth rate. Notice that, within

the linear-instability analysis, it is not necessary to consider the growth of three-dimensional per-

turbations, which are always less amplified than two-dimensional perturbations (Squire's theorem,

see Drauin and Reid, 1981). This is, however, no longer true in compressible flows: for instance,

the temporal-compressible mixing layer admits, at a Mach number M, = U/c > 0.6 (U is half

the velocity difference), oblique waves which are more unstable than the two-dimensional waves, as

shown by Sandharn and Reynolds (1989).

FIgurel: two-dmeusdomal temporal Incompressible m ng-layer, siultaneous evolution of the vortkity
(left) sad temperature (right) ids (from Coute, IW).

We ssume that the total velocity field (basic flow + pertubation) is two-dimensional (no
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z-dependance). Its vorticity in

W, =- +'Z; f = -v , (7)

The vorticity equation (1) is thus expanded to the first order with respect to c. We assume that

the basic flow is a solution of the Navier-Stokes equation. Therefore, it is easily obtained:

8 dO + =Vi r (8)

which can be written as (assuming that a 6 0):

M Y~) - c] (!L -it*- -a( -,  9
2 d 2  

ar (dy , (9)

which is the traditional form of the Orr-Sommerfeld equation. This equation can be solved nu-

merically, for various basic velocity profiles: for the hyperbolic-tangent mixing layer, corresponds

to a given Reynolds number a range of unstable wave numbers a. The amplification rate ac is

maximum for a certain wave number a., called the most-amplified mode: it is this mode which

will emerge the first when the initial perturbation is a white noise, or a random perturbation of

broad spatial spectrum. This in a very efficient way of selecting the associated spatial wave length

A. = 2r/a. . When the Reynolds number exceeds a value - 30 (for the mixing layer) and - 100

(for the jet or the wake), A. is Reynolds number independant, and scales on 8, , the initial vortic-

ity thickness. Therefore, the vortical layer of width 6i will first oscillate, then roll up, by vorticity

induction, and form a street of either Kelvin-Helmholtz vortices (in the mixing-layer case) or a

Karmen street (in the wake or jet case).

Figure I shows the simultaneous evolution of the vorticity and temperature fields, in a mixing-

layer calculation involving initially 8 fundamental eddies: the eddies, once formed, undergo suc-

cessive pairings, in which they turn around each other and amalgamate. One verifies also that

the temperature wraps around the vorticity concentrations. These images present striking resem-

blances with experimental visualizations of the mixing between two chemically-reacting flows, done

by Koochesfahani and Dimotakis (1986). Another important remark concerns the unpredictable

character of the pairing interaction, and the fact (when looking at the subsequent evolution of the

layer) that eddies of different size will preferentially pair: this may be responsible for structures

involving three eddies, when two eddies finishing to merge will pair with a third one.

Figure 2 shows an incompressible spatially growing mixiug layer once a statistically statio-

nary regime is established. The visual spreading rate in found to be in good agreement with the

experiments on natural$ mixing layers. Figure 3 shows the vorticity field in a spatially growing jet.

that is, unforced
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Figurell: numerical simulation of an incompressible spatially growing mixing layer: passive scalar contours.

We have studied in Staquet et a1. (1985) and Leejeur et &1. (1988) the longitudinalO spectra of
kinetic energy and passive temperature in a two-dimensional periodic mixing layer: it was shown
that the kinetic energy spectrum, initially formed of a peak at the fundamental mode a., and of
its harmonics, develops an inertial range at the end of the first pairing. The slope of this range is
comprised between k-" and k-'.

Figures: numerical simulation of an incompressible spatially growing plane Jet: vorticity field (courtesy P.
Alexandre, 1.M.G., 1909).

3 Two-dimienudsW compressnible periodic mi1-n- layer

We have developed a finite-differences numerical code allowing to solve the full compressible
Navier-Stokes equations 7%e spatial scheme is a centered second-order scheme, and the temporal

in the x direction
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one is a third-order Runge-Kutta scheme with reduced storage. Here (see also Normiand et al.,

1989), this code is applied to a two-dimensional temporal mixing layer of uniform temperature

initially. It was shown by Papamoschou and Rashko (1988) that the relevant parameter to describe

the spreading of the layer is the convective Mach number, equal to M. = (U1 - Us)/2c in this

simplified isothermal case. Calculations show that there is an inhibition of the Kelvin-Helmholtz

instability above M. = 0.6 : eddies hardly roll up and they merge without spiralling about each

other, as it is the case in the incompressible case. This seems to be related to the sharp transition in

the mixing-layer structure found experimentally by Papamoschou and Roshko (1989) at this Mach

number. Since, as already stressed, the three-dimensional instabilities grow faster above M, = 0.6,

it is necessary to develop three-dimensional computations in order to understand the structure of

a turbulent compressible mixing layer at high Mach numbers.

A Three-dimensional direct and large-eddy sinmlations

We have used pseudo-spectral numerical methods in order to simulate both the incompressible

three-dimensional temporal mixing layer (with free-slip boundary conditions on the upper and

lower faces of the computational box), and a gaussian wake 7 in a periodic box. The Navier-Stokes

equation in Fourier space may be written s:

--(,)= nl(s o rF-Ft(i) x F-1 ()I - [a' + a',(klko)] kj(k,t) , (10)

where j(k,t) is the velocity field, and 'l(k) the projector on the plane perpendicular to k. F
stands for a Fast Fourier transform operator. The incompressibility writes:

i..&(i't) = 0 (11)

The term .t(klk,) is a spectral eddy-viscosity, which will be used for large-eddy simulations (see

below). It is zero for direct-numerical simulations.

A passive scalar 0(k, t) satisfies the equation

9(k,t) = -ik.F[F-1 ()- 1 (f)] - [,c +i,€d(tk,)] k'I( ,t) ,(12)

where a spectral eddy-conductivity xt(klk.) will be used also for large-eddy simulations.

The risolutions are of 48' collocation points for the calculations done on the I.M.G. Alliant

VFX40 machine, and 128' points on the C.C.V.R. Cray 2 machine. The graphics are done on the

Alliant, using the FLOSIAN' software we have developed in Grenoble.

T that is, developing from a perturbed gaussian velocity profile
'FLow SImulation ANalysis
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4.1 Direct-Numerical simulations

4.1.1 The mixing layer

The calculation domain in physical space is a rectangular parallelepiped of sides L., L. et L,. One

assumes periodicity in the z and z directions. The resolution is 128' for a calculation involving

4 fundamental eddies (L. = 4A,). One superposes to the basic flow a three-dimensional isotropic

wide-band perturbation of kinetic energy < u' 2 >= 10- 4 U2, whose spectrum peaks at a.. Vi-

sualizations of the scalar9 show that a hairpin-shaped vortex of spanwise wave length A = 2A.

is formed in the braids, with the same topology as that observed experimentally by Bernal and

Roshko (1986). The same structures have been found in the direct-numerical simulations involving

two eddies done by Metcalfe et al. (1987). The origin of these hairpin coherent structures is still

under discussion. A possible explanation, proposed by Lasheras and Choi (1988), comes from the

straining between two Kelvin-lelmholtz rollers of vortex filaments perturbed about the stagnation

line. We expect to show more about the vorticity fields corresponding to these structures during

the conference.

4.1.2 The plane wake

The calculation is done at a resolution of 48' points. The initial flow is a gaussian profile, perturbed

by the same perturbation as above. Figure 4 shows the passive scalar during the formation of the

Karman street. Later on longitudinal vortices appear, in the outer edge of the Karman eddies. The

vorticity contours will be shown at the conference.

Flgure4: paslve scalar contour In the three-dimensional wake calculation.

9 This work is in progress. Up to now, only colour slides of the scalar field during the pairing of

primary vortices are available.
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4.2 Large-Eddy simulations

4.2.1 Spectra( eddy-€oe €fi sntf
We use the concept of spectral eddy-viscosity and eddy-conductivity in order to model the sub-

gridscales corresponding to k > k., k. being the cutoff wave number (see Lesieur, 1987). Using

the non-local interactions theory of isotropic turbulence two-point closures, it may be shown that

the kinetic energy flux between k and the subgridscales can be represented with the aid of the

eddy-viscosity (Kraichnan, 1976, Lesieur and Schertzer, 1978):

i e(kAk;)= / Gkp[5E(p) + p E , (13)

for k << k,. E(k is the kinetic energy spectrum, and OApq a time characteristic of the triple-

correlations relaxation. In the same way, the eddy-conductivity may be written as

,(klk.) = j E(p)dp (14)

If k. lies in a k- s" Kolmogorov spectrum, it is found:

-,(klk) =o.2 67[ '_]1 , (15)

x, (klk,) = 0.445[ E(k 11/I2 (16)

It is these quantities which are used in eqs. (10) and (12).

When the method is applied to isotropic decaying three-dimensional turbulence, kinetic energy

spectra close to k-5i are obtained in the neighbourhood of k., and the kinetic energy decays like
- 1

.S
7 (see Lesieur et al., 1989), in good agreement with the predictions of the statistical EDQNM

theory (see Lesienr, 1987).

The eddy Prandtl number vj,(kjkc)/(kjk), where mt(k1k) is the spectral eddy-diffusivity,

calculated using the spectral temperature transfers, is, from EDQNM calculations, taken constant

and equal to 0.6. In fact, it was recently shown by Lesieur and Rogallo (1989) and Lesieur et

al. (1989), on the basis of a direct determination, that it increases with k between the values

0.2 and 0.8. But this variation has no incidence on the following calculations, where the passive

temperature is used only as a numerical dye to visualize the coherent structures.

4.2.2 The ntisag laer

The calculation involves two fundamental eddies, with a resolution of 64 x 32 x 32. Figure 5 shows

the interface"° when the primary instability starts to grow. It indicates that a strong spanwise

10 characterized by the isothermal surface of zero value initially
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instability develops as well. This spanwise instability could be due to the straining between the

fundamental eddies of vortex lines perturbed initially in the spanwise direction by the random

perturbation. This would lead to hairpin vortices by the mechanism proposed by Lasheras and

Choi (1988), already mentioned.

FlgureS: large-eddy simulation of the mixing layer; scalar field at the beginning of the roll up.

Figure 6 shows the same surface at the end of the roll up. Figure 7 shows at the same time

the primary vorticity w., corresponding to an iso-value 2U/6 . Notice that this value is the

maximum vorticity you can get in two dimensions, due to the vorticity advection by the motion,

and its molecular dissipation. Notice that, on Figure 6, the dark thin longitudinal lines indicate

the longitudinal vorticity w., for the same iso-value as w.. It indicates that longitudinal streaks of

intense vorticity link the billows, as in the above direct numerical simulations.

Figure i- largs-eddy simulation of the mixing layer; calar told t the and of the rol up; in dark Is shown
the Intense longitudinal vorticity.
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Flgure7: large-eddy simulation of the mixing layer; spanwise vorticity (saine time as Figure 6).

Finally, Figure 8 shows during the pairing the three-dimensional spatial spectra of the passive

temperature, the kinetic energy, and the three components of velocity. It indicates how, starting

from initial spectra exponentially decaying at high wave numbers, a cascade has developed towards

the small scales (with a slope which is fairly close to k-/ 3 ). This is in very good agreement with

the experimental measurements of these spectra. Finally, and when the turbulence in the small

sales has developed, the variances of the three velocity components are found to be:

< u'2 >= 0.11U,

* V'3 >= 0.07U 2

* 111 >= O.08U

again in fairly good agreement with the experiments.

It seems thus that this spectral large-eddy simulation code is a very good tool which allows to

describe the whole transitional process towards developed turbulence, both for predicting the right

statistics and displaying the correct primary and secondary coherent structures.

Aknowledgememts

This work has been supported by D.R.E.T. under contract 88/150, and by CNES/Avions

Marcel Dassault. Part of the calculations were done on a grant of the Centre de Calcul Vectoriel

pour la Recherche. The Institut de M6canique de Grenoble is sponsored by the C.N.R.S., I.N.P.G.

and U.J.F.

13S13* )



M. Lesieur

Ia'-5/3

Figureg: large-eddy simulation of the mixing layer, three-dimensional spatial spectra of (from top to bottom)
the passive temperature, the kinetic energy, and the three velocity components (longitudinal, transverse
and spanwise).
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Far field boundary conditions for poblems In fluid dynamics

by

Bertil Gustafsson
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Uppsala, Sweden

Abstract
When solving flow problems in unbounded domains it is necessary to introduce artificial

boundaries. If the flow is smooth in the far field and there are no significant viscous

effects, it is rather well known how to construct boundary conditions such that accurate

solutions are obtained. However, sometimes the computational domain cannot be extended
far enough. For example, when computing the flow around a solid body, the boundary may
intersect the wall, thereby cutting through the boundary layer, In that layer the gradients

are very large for large Reynolds-numbers, and the usual linearized equations are no longer

valid.

We shall analyze a few model problems in order to get an understanding of the behaviour of

the solutions depending on the boundary conditions. In particular, we shall discuss the
procedure of using the inviscid conditions as the basic set and then add viscous conditions of

derivative type. In general the errors introduced In this way are small provided the given
data at the boundaries are accurate. If such data are not available, a common procedure is

to extrapolate all variables. We shall prove that this in general introduces large errors.

However, in the case with a boundary layer, the situation is more favorable. We shall
prove that large gradients along the boundary actually helps to keep the error small.
We shall also present a number of numerical experiments which confirm the theoretical

results.

137



ARCHITECTURES DES SUPERCALCULATEURS

SUPERCOMPUTER ARCHITECTURES



NEC Supercomputer SX-3 Series
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Abstract

This paper presents a brief review of the NEC SX-3 Series

Architecture and Software from the view point of NEC philosophy

for the SX-3 development. In particular, the importance of

single processor power is stressed even though this system

support parallel processing.

1. Introduction

In April, 1989 NEC announced SX-3 Series consisting of 7

model configurations, with maximum performance ranging

from 1.37 G Flops for the processor Model 11, to 22 G Flops

for the 4 processor Model 44. The SX-3 is the first

Japanese supercomputer employed a multiprocessor

configuration.

2. SX-3 Development Philosophy

The objectives of Supercomputer is to offer users the

problem solution. In other words, to offer the capability

to solve the large scale scientific problems with minimal

cost. It has to offer the shortest turn-around time

or response-time for the given problem.
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Response time may consist CPU time, I/O time and

communication time. These have to be offered in well

balanced manner, however, the most important one is

considered to be CPU time.

Minimal CPU time is realized by the appropriate choise

of the architecture and the device technology. The

criteria of consideration for the choise are as follows;

• The selected architacture has to offer minimal CPU time

for the wide range of application.

* The architecture is also appropriate one from reliability,

easy-to-use and upgradability view point.

The high-speed device technology in a given periods of

time and the balance between the architecture and the

device technology have to be considered.

In the early stage of SX-3 development, the followings were

observed and then decided considering the above mentioned

criteria.

To develop the fastest single processor is very important,

in particular, the scalar performance of single processor

is never degraded even if the cost is considerably high.

* The importance of powerful scalar processor is never

too stressed. Because even if the vectorization or

parallelization ratio of the program is say over 99% and

remaining 1% is to be processed by the slower scalar

processor, then the total parformance is severely degraded.

Even more, these exists a lot of large application

programs whose vectorization or parallelization ratio

is rather lower.
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In the present and foreseenable future, SIMD type of

application is considered to be dominant over MIMD type

application, therefore the vector processing support

has priority to the parallel processing support. Note

that 'microtasking' is considered to be a kind of vector

processing.

Yet, there exist some applications which require MIMD

operation and also the user site where throughput is

important, therefore multi-processor support is also

necessary as second priority.

In case of multi-processor system, the shared memory

type architecture is appropriate, considering the ease-

of-use and the continuation from single processor system

point of view.

For the device technology, Silicon has to be continu-

ously used because devices such as GaAs and JJ is yet

in infant stage and silicon technology has enough room

to further speed enhancement, and it is stable and

economical.

The observation described above strongly affected the

choice of architecture and technology for SX-3 development.

What have to be stressed here is that NEC strongly favors

the system which has the most powerful processors by the

faster VLSI technology and never supports the system which

have many processors by relatively slower technology as

general purpose supercomputers.

3. SX-3 technology

NEC continues to use silicon VLSI technology for achieving

the most powerful scalar as well as vector and parallel

processing capability.
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Using high-speed Silicon bipolar CKL (current mode

logic) circuitry, the CML-LSI logic elements of the

SX-3 have gate delays of 70 picoseconds and contain

up to 20,000 gates per chip. The high speed 40 Kbit

RAM chips used in the vector registers contain 7,000

gates of logic and have access times of 1.6 nanoseconds.

Main memory chips are 256 Kbit Bi-CMOS static RAMs with

access times of 20 ns, and the extended memory is

integrated with 1 Mbit MOS dynamic RAMs.

Up to 100 high speed LSIs (2,000,000 gates) are

contained on each 22.5 x 22.5 cm ceramic package.

Due to the enormous number of input/output terminals

to connect, four signal wire layers were employed on the

ceramic board. The density of the chip layout is

further augmented with the use of polymide insulation

which enables faster signal delay times, resulting in

very fast signal propagation.

4. SX-3 Architecture

As mentioned above, our basic approach to realize a high-

speed computer system is to enhance a single processor

performance to the ultimate, and then to combine those ultra

high-speed processors constituting a multiprocessor system.

Figure 1 shows a maximum configuration of the SX-3 system,

and Table 1 shows the system specifications together with

those of the SX-2A, the top end model of the former SX

series. In a maximum configuration, four arithmetic

processors share a common main memory unit which has a

capacity of up to 2 GBytes. The shared memory system and

a small number of high-speed processors to realize a

multiprocessor system give users the ease of use and easy

programming environments, because they don't need to care

about the memory allocation algorithm, different from the

distributed memory system, and don't need to augment the

degree of parallelism to fully utilize the hardware

capability.
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In Figure 1, the Control Processor (CP) performs I/O

management. On the other hand, the Arithmetic Processor

(AP), which has internally a scalar and vector unit,

is an ultra high-speed Fortran engine and executes all

the user codes compiled by Fortran compiler and major super-

visory operations.

The Control Processor Memory (CPM) with a capacity of up to

256 MBytes is used as large I/O buffer. The Main Memory

Unit (MMU) is a large and fast memory for the execution of

user and supervisory programs running on the Arithmetic

Processors. To transfer a large amount of vector data

quickly and smoothly, the MMU is divided into a maximum

of 1,024 independent banks, that is 1,024 way interleaved

system is employed.

The Extended Memory Unit (XMU) is a large capacity semi-

conductor memory unit ranging from I GBytes to 16 GBytes,

and works as a very high-speed virtual disk unit. The

XMU, which has a transfer speed of 2.75 GBytes/sec, is

used for temporary/permanent disk files, disk cache buffer

and job swapping files.

The SX-3 can configure up to four I/O processor with an

aggregate transfer speed of I GBytes/sec. Each I/O

processor has up to 64 channels through which various

peripherals such as disk units, cartridge library, laser

printers, optical disk units are connected.
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SX-3 AP Scalar Unit

Each AP Scalar Unit consists of a full complement of 64 bit

floating and fixed point arithmetic pipelines. Each

AP scalar unit has 128 general purpose, 64 bit, registers.

The scalar unit issues both scalar and vector instructions.

The machine instruction set is based on the RISC (Reduced

Instruction Set Computing) concept.

Numeric Representations

"Standard Range" is recommended when greater precision is

desired; it is compatible with IBM single, double, and quad

precision floating point representations. "Extended Range"

is recommended when a large numeric range is required; it

is compatible with CRAY single and double precision

floating point representations. The format can be selected

at compile time by use of a compiler switch.

Instruction Chaining

Full instruction chaining is supported. Chaining is an

advanced form of pipelining which allows either related or

unrelated vector instructions to begin execution before

previous vector instructions complete, even though they

may use the same registers or pipelines.

qX-3 Series Main Memory

Main Mamory is interleaved up to 1024 ways. 80 Gigabytes/

second of concurrent sequential vector load/store, constant

stride vector load/store, vector gather/scatter, scalar

cache load, scalar store, I/O, and XMU transfer are

supported on the SX-3.

The XMU consists of up to 16 Gigabytes of 1 Megabit DRAM

(Dynamic Random Access Memory). Transfer speed to and from

Main Memory is 2.75 Gigabytes/second.
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Reliability

Traditional supercomputers have been designed for the sole

purpose of high speed execution. As a result, certain

reliability and error checking features, common to lesser

machines, have been sacrificed.

Most recent designs have put greater emphasis on system

stability and reliability. As an example, reliability of the

SX-3 Series is supported by BID (Built In Diagnostics).

BID are implemented in hardware; the scope of BID includes

over 10,000 error indications within the system.

Computational circuits are continuously monitored by

modulo-3 verification and dual circuit confirmation.

If an unrecoverable error is detected, the faulty unit is

automatically stopped. A hardware implemented, automated

fault dictionary is referenced immediately upon detection

of the unrecoverable error. Therefore, the maintenance

engineers know which modules to replace within seconds of

the error detection.

6. The SUPER-UX Operating System

The primary operating system for all models of the SX-3

Series is SUPER-UX, a supercomputer enhanced operating

system based on AT&T System V UNIX. Some of the major

extensions added to support the requirements of supercomput-

ing include the (a) Intelligent I/O Accelerator Subsystem,

(b) Supercomputer File System, and (c) BATCH processing

facilities.
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Commitments for ongoing SUPER-UX development are to

maintain compatibility with AT&T UNIX, IEEE 1003.1 (POSIX),

relevant future standards as they are adopted, and to

continue enhancing both performance and usability for the

supercomputer community.

IAS (Intelligent I/O Accelerator System)

IAS is an operating system extension which intelligently

buffers I/O data through a series of multi-level data

caches. Sophisticated algorithms eliminate data thr c:hinq

while providing automated, user independent, high

performance I/O, including transparent parallel I/O.

SFS (Supercomputer File System)

SFS is a file system extension which is optimized for large

scientific data files. This compares to the standard

System 5 file system (S5FS) which is designed for rather

small data quantities, such as programs and shell scripts.

SFS allocates file space in units of disk tracks or

cylinders; S5FS allocates by sector units (512 bytes). Both

file systems are fully, transparently supported within

SUPER-UX.

BATCH Processing and Networks

One of the shortcomings of UNIX is the lack of batch

processing capability. Since one of the primary

environments of supercomputing is the batch workload, an

implementation of NQS has been ported and coupled with

enhanced scheduling and job control functionality.

A distributed production environment is further supported

by NFS and TCP/IP networking capability, the latter

including the telnet and ftp facilities. Future extensions

will include OSI and FDDI networking products.
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7. Compilers

FORTRAN is the primary programming language in scientific

computing, and as such, is the basis of providing automated

vector and parallel processing capabilities. The FORTRAN

compiler, FORTRAN77/SX is based on the advanced

vectorizing compiler used for the SX-2A. Enhancements are

added to provide state-of-art automated parallel processing.

Vectorization features include loop collapsing, automatic

statement interchange, index migration, automatic inlining,

and automatic loop unrolling. Automated parallel processing

is initially implemented by microtasking techniques.

The C compiler, C/SX, will feature automatic vectorization

and automated inlining. It will be suitable for

applications development as well as systems and utility

generation.

8. Summary

The SX-3 is the first Japanese machine to be able to use

parallel processing to either increase overall throughput

of multiple jobs and reduce the turn around time of a single

job. However, NEC's basic design approach for high-speed

processing is to pursue the ultimate scalar performance

of a single processor as well as vector processing

capability.

It should also be noted that one of the major technological

progresses, which contributed to the realization of this

type of multiprocessor system is in Silicon VLSI and

high-density packaging technologies.
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LARGE SCALE APPLICATIONS OF TRANSPUTERS:
ACHIEVEMENT AND PERSPECTIVE

D.J. Wallace,
Physics Department, University of Edinburgh

Abstract

This paper gives an overview of large scale applications of transputers in the context of the
Edinburgh Concurrent Supercomputer Project. This is built around a Meiko Computing
Surface, with presently some 400 floating-point transputers and 1.7 Gbytes of memory. The
first part of the paper gives an overview of the Project's origins and status and describes
experience gained in providing a multi-user service. The second part gives examples of
applications which are able to exploit effectively this processing power. Tools which facilitate
the use of the machine for large scale computation and visualisation are also briefly described.

1 Project Origins

Work at Edinburgh on the use of parallel computers for Physics applications began in 1980,
on the ICL Distributed Array Processor at Queen Mary College. This initiative was spear-
headed by Stuart Pawley, whose main interest was in molecular dynamics, but the work
rapidly expanded into lattice field theory as we appreciated the potential of this fine-grain
SIMD machine. We were successful in acquiring a dedicated machine at Edinburgh in 1982,
through funding from the Science and Engineering Research Council and an agreement for
software development between ICL and the Edinburgh University Computing Service; a sec-
ond DAP was donated by ICL in 1983. The machines had to be decommissioned in 1987, on
the replacement of the ICL hosts which acted as the University mainframe resource. At that
time some 180 publications had resulted from the work spanning many application areas; a
summary of the work can be found in [1].

The anticipated replacement of the ICL host machines, and the now large community de-
pendent on high performance computing obliged us to look for alternative sources of it. We
were convinced then that the only way we would have access to the required power with the
budgets we might expect was through exploiting novel architecture parallel machines. We
already had a relationship with Inmos who were supporting a student in parallel computing
for high energy physics, and were fortunate to obtain one of the earliest Meiko Computing
Surfaces in April 1986, with the support of the Department of Trade and Industry and the
Computer Board. This demonstrator system consisted of 40 T414 transputers each with 1/4
Mbyte, along with a display system, and was file served and networked through a microVAX
host. The reliability of this system, the imminent loss of the DAPs and a survey of existing
parallel machines formed the cornerstone of the proposal for the Edinburgh Concurrent Su-
percomputer (ECS). The proposal, in collaboration with Meiko, sought some £3.4M from
the SERC, DTI and Computer Board to fund a machine built around 1024 T800 transputers
(with floating-point capability) each with 1 Mbyte of memory, to provide an electronically
reconfigurable multi-user resource. After some three months the three funding agencies
agreed in principle to consider joint funding of the machine. Phase 1 funding for the ma-
chine infrastructure and compute resource of 200 T800s, each with 4 Mbytes, was secured
during 1987, multi-user service for code development was established in September 1987,
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Department of Trade and Industry 11144K
Computer Board 1575K

SERC (Science and Nuclear Physics Boards) C400K
Meiko Limited (exd. personnel) £779K

Scottish Development Agency 112K
Industrial Affiliation etc.(cash and kind) £800K

Edinburgh Univ. 3 Comp. Officers, infrastr., plus cash of 1102K

Table 1: Funding support for the ECS as at December 1989

and the first T800 compute resource installed at the end of that year.

2 Present Status

2.1 Funding

The present level of commitment to the Project is shown in Table 1. The initial DTI con-
tribution funded the infrastructure for the machine, including cabinets, inter-cabinet link
boards, 32 host boards for code development, 4 display systems and some 5 Gbytes of mem-
ory. A second phase of DTI support has enabled us to expand the compute resource with
another 195 T800s and 900 Mbytes of memory. The Computer Board and SERC support
includes some X600K for hardware, which provided the Phase 1 T800 compute resource,
and a frame grabber and fast I/O system. Their contributions also contain some funds for
software, maintenance, and two to three people for up to five years. Meiko have also con-
tributed very significantly in discount, maintenance and software; in addition they site two
people at Edinburgh and have considerable in-house software activity to meet the Project
requirements. The University has committed 1102K in cash as well as three computing offi-
cers for service management and support. At the time of writing (December 1989), there are
a total of 15 personnel in the core of the Project (i.e. excluding specific application teams);
Meiko support and the use of the income from the industrial affiliation scheme in supporting
10 of these people have been crucial factors in the successful launch of the Project. It is
anticipated that substantial recurrent funding from the Science and Engineering Research
Council and from the Computer Board will enable the establishment of a parallel comput-
ing centre early in 1990 incorporating work on two AMT DAPs and departmental shared
memory resources, as well as the ECS Project.

2.2 Hardware Configuration

General information about the transputer, the Computing Surface and the occam language
can be found in [2). The machine organisation is shown schematically in figure 1. The
computational model is that of a network of workstations and file servers. It is realised by

a transparent communication spine which is also based on transputers and off which hang
the various resources of the machine. The microVAX host of the original demonstrator
system is now retained as one of the file servers, and to provide a VMS environment. The

user can also file serve off a number of Hewlett-Packard disks running a Berkeley 4.2 BSD
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Network Access

System

Figure 1: Schematic diagram of Computing Surface organisation

file system. Access is provided by direct lines and the facility is networked with ethernet
and X.25 connections. To provide multi-user capability the compute resource is divided
into domains; the sc and number of these is controlled by the system manager, and may
be changed (exploiting the software reconfiguration) for example to match day and night
time user needs. At present there are typically some 30 domains on the service machine; a
separate machine for system development can support a further 8 users. At login, the user

is presented with a menu of domains; she bcots an available domain and connects to a file
server and has then a personal parallel machine. Back-up is provided by Exabyte cartridges.

2.3 Operational Aspects

Experience at Edinburgh in the offering of a multi-user service on novel architectures is based
on the two mainframe-hosted DAPs between 1982 and 1987 and on the ECS sin~ce 1987.
Although these machines are of very different architectures, the operational problems of
supplying and maintaining a multi-user service are very similar. The problems are principally
of two distinct types: those of actual day-to-day supply of the service, and those of providing
effective support to the users of the service.

The first class of problems is mainly concerned with the fair *allocation of machine resource.
Such problems as the amounts of on-line and off-line file space can be critical as all the
experience gained shows that the amounts of disk requirements may be phenomenal both
in total size and in their rate of growth. The gift of disks under the Hewlett-Packard
Affiliation agreement has therefore been particularly valuable. Another major problem is
that of ensuring access for long runs, which are frequently required and can prove to be a
scheduling problem.

The experience at Edinburgh is that there is almost always pressure on the facility, no matter
how much parallel resource is available. In the ECS we have two opposing requirements: to
partition the resource so that many users may aeu it at the same time, and to provide
tho largest domains possble for a fewer number of users for long production runs. i
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The second class of problems concerns offering a reasonable level of user support. Because of
the different nature of the coding strategy and structure, typically a very high level of specific
expertise is required of any user support staff. At this stage in parallel computing software
development, such staff have to be specialists, while traditionally user support personnel in
University Computing Centres have had a more widely based and general background. This
problem will of course become less acute as parallel programming environments improve.

3 System and Utilities

A stand-alone multi-user system MMVCS has been in use since September 1987. It provided
the user with the occam programming system, OPS, and UNIX' file serving utilities. The full
UNIX-like system MEiKOS was released into the Service Machine in October. Among the
work performed on the development machine is a porting of communications software and the
AT&T System V.3 utilities. There are C and Fortran compilers for single transputers and a
range of utilities is available or under development at Meiko; Meiko's parallel programming
environment for Fortran and C code with message passing, CS-tools, has been used in a
number of projects over the summer. Standard packages which have been ported include
GKS.

There has been considerable effort at Edinburgh to develop utilities which provide greater
flexibility and ease of porting of codes to the Computing Surface. The cornerstone of this
effort is the development of fast topology independent adaptive message passing systems
[3,4]. The utility, called Tiny, explores the transputer configuration at run-time and sets
up point-to-point communications and broadcasts. Code does not have to be recompiled to
run on different configurations. The harness also has fault tolerant capabilities; provided
a booting path is available through each transputer, efficient routing between pairs will be
set up even if some of the links are defective - they will simply not be utilised in setting
up the routing tables. The utility can be called from Fortran or C as well as used in
an occam program. Various flags permit the user to specify whether data must arrive in
the same order as it was sent etc., and the size of the buffers can be varied to match the
application requirements. The system has particularly good characteristics under heavy
load; for example if messages arriving on link 0 cannot be forwarded on link 1 because the
latter is blocked, other messages arriving on link 0 can be passed on by links 2 or 3 if these
are available.

A recent major development has been the extension of this utility to provide deadlock-
free communication. The approach is based on recursively casting spanning trees in the
processor graph, followed by a reconstructive phase which repairs excessive damage. The
method finds the shortest distance solutions for regular graphs such as grids, and for irregular
topologies the mean interprocessor communication distance is only modestly increased, for
example by around 25% for a random transputer graph of 256 nodes. It should be said that
in practice the original Tiny has only rarely been known to deadlock unless the user has
written an incorrect program or insufficient buffers have been provided; the deadlock-free
Tiny is important however both as a matter of principle and for safety-critical applications.

The start-up latency for the utility is 17 microseconds on both the send and receive pro-
cesors, and the through-routing CPU overhead time is 19 microseconds per node, with
a realised bandwidth of around 1.4 Mbytes per second per link. These figures compare

tUNIX is a trade mark of AT&T 3e.1 Laboratories )
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favourably with the iPSC/2 for communication over up to three links, particularly when one
bears in mind that we are comparing hardware and software through-routing capability, and
that they refer to a lightly loaded network.

From the user point of view, utilities like Tiny are important because they assist flexible and
portable code development. It is already the basis for a number of other topology indepen-
dent utilities for example for task farming and 3-d graphics. It has also been used to explore
the properties of irregular graphs [5] which have many attractive features, including mean
interprocessor distance and diameter which increase only logarithmically with the number
of (fixed-valency) nodes, and are very close to the optimal bound. Such graphs provide a
framework for shared memory emulation on distributed memory machines, following the
work of Valiant [6].

Although the implementation does not utilise random graphs, it should also be mentioned
here that Linda has also been implemented on the ECS [7]. The kernel has recently been
rewritten in C using Tiny [81 and tools will soon be in place to allow C-Linda programs to
be developed and run on any topology; it is also intended that a Prolog interpreter with
added predicates will be ported to provide a Prolog-Linda implementation.

4 Node Performance

Reasonable performance on a single node is obviously an important prerequisite for super-
computer performance across an array. We summarise here experience gained in a range of
applications.

For well-structured Fortran or C code which is floating-point intensive, benchmarks for single
precision give up to 0.6 or 0.7 Mflops per node. A number of applications written in occam
are running at in excess of 1 Mflops per node. Some comparisons relative to workstations
are given in the examples of applications below.

To achieve maximum performance with minimum effort, BLASI routines have been written
in assembler for a single T800 [D. Roweth and L.J. Clarke, unpublished]. The table below
illustrates the performance obtained in these routines.

routine Mflops routine Mflops
saxpy 1.17 daxpy 0.72
sdot 1.17 ddot 0.78

snorm 1.58 duorm 1.05
sscal 0.78 dscal 0.49
ssum 1.35 R dsum 1.03

5 Applications

There are currently over 300 registered users of the facility. The second edition of the
Project Directory [9] gives a snapshot of around 100 projects under way as of September
1989. The following sections therefore contain only a few examples of some of these projects,
to illustrate areas where it would not have been possible to do the work without the ECS
facility. The topics fall into three broad categories: visualisation and image processing,
simulation and control, and interactive design.
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5.1 Visualisation and Image Processing

The four display systems and frame grabber facility support a wide range of activities in
these areas, including constructive solid geometry, and NMR and other medical imaging
techniques. The existence of the 3-d graphics utility will further expand this work. We
focus brief comments on two specific examples.

5.1.1 Ra iosity

Radiosity can produce 3-d visualisation of veiy high quality. The method is based on (i)
dividing the surfaces in the scene into N patches and determining line of sight visibility
between pairs of patches, (ii) solving the N simultaneous equations for the brightness of
each patch, and (iii) rendering the scene using z-buffering or ray-casting. Rendering the
scene from different view-points requires only stage three, and changing the lighting only
stages two and three.

This algorithm has been implemented at Edinburgh to run on an array of arbitrary size
[10]. The natural parallelism in the calculations of the form-factors (the coefficients relating
the contribution of the illumination of one patch due to the light from another) and in the
iteration of the matrix of these form factors to determine the solution enables the method
to run effectively on hundreds of transputers.

5.1.2 Fractal Landscapes

Fractals are well known to produce realistic and spectacular landscapes, and some of the
larger Hollywood special effects studios such as Lucas Film are starting to use them in films.
The conventional approach constructs the surface from random numbers starting from a
plane.

An undergraduate project in Computer Science [M. White, unpublished] was undertaken
to extend this method to construct fractal planets. The project was originally conceived
as a serial program to run on a SUN workstation. However, as the student discovered, the
method has enormous computing requirements. To obtain results, a last minute decison had
to be made to move to the ECS. The porting took two weeks. The resulting C code ran 20
times faster on one transputer than on a SUN 3/60 (without floating point support), and
the level of natural parallelism in the ray-casting phase enabled the largest domain available
on the ECS (130 T800s) to be used efficiently. The most complicated picture took one hour
on this domain, and would have taken more than 2500 hours (more than 111 days) on the
SUN. Would-be space travellers will be interested to know that these hospitable planets with
their oceans and continents can be visited and explored on the screen.

5.2 Simulation and Control

Simulation in scientific and engineering problems offers great scope for parallelism. The
use of data-parallelism (geometric decomposition) is rather well understood now (see for
example [11] and references therein), in particular the conditions under which the application
can be scaled up to run at the same speed on arbitrary numbers of processors. Simply
stated, it is sufficient that the dimension of the connectivity of the computer be at least
as large as the spatial dimension of the problem - usually two or three. Thus it would
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be theoretically advantageous to have at least six links on transputers to ensure scaling in
three-dimensional problems, although we have not encountered serious problems in practice
with present hardware limitations (and hardware through-routing seems in any event a more
important target). We focus here on four examples.

5.2.1 Lattice Field Theory

Applications in High Energy Physics are outwith the concerns of this Meeting, but some
comments are in order here, because they are traditionally amongst the first to be mounted
on high-performance parallel machines, and although they are not communications-intensive,
they provide a more relevant and convincing benchmark than the Mandelbrot set. In brief
they involve simulations on a four-dimensional lattice (approximating space and time), in
which the variables are the elementary particles of the theory (quarks, gluons, electrons etc.).
Because the spin-half particles are Fermions and obey the Pauli exclusion principle, special
algorithms must be developed. These algorithms typically involve a sparse matrix inversion
at each time-step of the simulation. This matrix has as one of its indices the space-time
lattice points; on a 16' lattice this implies a 65000 x 65000 matrix. Effort at Edinburgh (for
a review see [12] and references therein) has been focused on the phase transitions resulting
from the interactions of Fermionic particles, and on the possibility of models unifying the
known fundamental forces without the need for the elusive Higgs scalar particle. These
codes can be run on any size of domain; on 130 T800s they deliver more than 100Mflops.

5.2.2 High Temperature Superconductors

Superconductivity is another area of science where Fermions (electrons) play a central role.
This field has returned to prominence with the discovery of materials that superconduct
above liquid nitrogen temperatures. The properties of these materials are not yet well
understood, and computer simulation is potentially an important tool.

Jones and Yeung at Queen Mary College have implemented a parallel variational Monte
Carlo method to study a model of these materials which may be both superconducting
and magnetic 113]; the method was developed and tested on a small local machine and
benchmarking and production runs done on the ECS. The algorithm achieves near-linear
scale-up which indicates that it will run with acceptable efficiencies on arrays of hundreds or
more T800s. To date the program has been successfully run on a 22 x 22 lattice, probably
the largest of any attempted so far. This implementation on transputers makes possible the
study of the physics for a range of practically interesting parameters.

5.2.3 Neural Network Models

The 'wetware' components in the nervous system have typical timescales of the order of
milliseconds, in contrast to the nanoseconds of semiconductor hardware, and our remark-
able neural processing capability is due in part at least to its massive parallelism. Most
neural network models reflect this parallelism and are amenable to study on parallel com-

puters. Activity on the ECS covers many aspects, including general pattern processing and
optimisation.

The most widely studied network for practical applications is the layered network, which
is trained by error correction methods (back-propagation) so that the desired processing is
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achieved for given input data with known outputs (for example, in medical diagnosis, the
input could be symptoms and the output likely diagnosis and suggested treatment). The key
idea is that the net should capture the intrinsic correlations of the data, so that its capability
generalises to new data in the domain in which it has been trained. A simulator has been
developed on the ECS [14] which enables the user to specify the number of layers in the
network, the number of nodes in each layer, the nature of the connectivity between layers,
etc. This is then automatically mapped down on to the transputer array. The simulator has
been used at Edinburgh for studies of content addressable memory and storage properties,
for exploring training strategies, for protein secondary structure prediction and for texture
discrimination. In the last case, the simulator runs at about 10 Mflops on an array of 17
transputers; on larger problems, the performance should scale up. External use includes in
the oil and defence industries, and in assessment for credit scoring in the banking industry.

Neural networks also provide a framework for tackling optimisation problems. An example
of current interest includes the use of the method of analogue neurons for image restoration
in the framework of Geman and Geman. Interest in optimisation problems has evolved also
into the study of genetic algorithms, in particular for the optimisation of transputer array
topology for some application. For further examples and references on ECS work in these
areas see [15].

5.2.4 Chemical Process Simulation and Control

In most chemical plants and all oil refineries distillation is an important operation. Much
attention is devoted to controlling distillation columns efficiently, since these are one of the
largest energy sinks in the process. Problems affecting efficient control include: columns
consisting of many stages which may be slow to respond to feedback control actions; and
stringent specifications on final product purity. If computer simulation of the process is fast
enough, an efficient control plan can be designed and implemented to keep the column at
the desired production specifications.

The implementation on the ECS involves a chain of transputers for each column, each
transputer being responsible for a module or plate in the column. In the simulation, the
dynamic evolution of the column's state is interactively displayed. Two control policies
have been examined: feedforward control with change of composition of feed; and product
changeover, i.e. switch of production from product A to product B with the minimum
'off-spec' production.

The conclusions from this work by McKinnel and Ponton [16] are that modestly-sized
transputer-based systems are now sufficiently powerful and cost-effective to be considered
for dedicated use 'on-line' for this problem.

5.3 Design: Optimisation in stressed membrane suface structures

An important Engineering application is being undertaken by Moncrief and Topping at
Heriot Watt University [17,18]. This concerns the optimisation of cutting patterns for tension
structures such as the Schlumberger Headquarters in Cambridge. The aim is to improve
current methods for optimising stress distributions across the surface. The conventional non-
linear modelling approach starts from some arbitrary surface and progressively relaxes this
to an equilibrium configuration; this requires specifying a desired surface stress distribution
and an appropriate topology. The real difficulty is that one must define a cutting pattern
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for flat cloths from which the real surface will be fabricated. One is therefore faced with
optimising the cutting pattern by varying the planar cloth geometry. This is just one example
of an important class of non-linear optimisation problems in which new design points are
iteratively determined by displacement along a search vector by a specific amount.

In practice a hierarchical CAD data structure is used, in which the surface patches are
defined in terms of discrete space curves. These curves are in turn defined using lists of
atomic control points, which are the variables over which the optimisation is performed. The
non-linearity of the problem requires that the gradients for the determination of the search
vector must be calculated numerically. Having determined a search vector, a linear search
m,st be preformed along this direction to determine a good step length. The gradients of
the objective and constraint functions with respect to each control point can be calculated
independently, as can the trial step lengths, so that the whole calculation can be done
efficiently by task farming. Since in real structures there may be hundreds of variables, and
this is by far the most time-consuming part of the computation, the potential for parallel
computation is vast.

The method has been implemented on the ECS, and near-linear speed-up observed. The use
of the ECS has enabled interactive design to replace overnight batch runs on the Edinburgh
University mainframe.

6 Concluding Remarks

In this paper we have presented a snapshot in the development of a large transputer array
facility, with emphasis on a number of applications where performance is a crucial factor
in the feasibility and success of the problem. The range of work underlines the potential
of massively parallel machines in supercomputer applications. We have also stressed the
importance of the development of tools and environments to facilitate ease of porting and
future portability. For distributed memory machines, we are still at the beginning of this
process, but already it is clear that sufficient progress has been made to establish the scientific
value and commercial viability of this technology. In drawing an overall perspective, one
would conclude that the two key factors for its continued commercial success are tools for
efficient porting of large C and Fortran codes, and competitive microprocessor development,
incorporating commensurate communications and routing capabilities.
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Abstract

Capable of executing multiple scalar operations per cycle, a superscalar architecture can parallelize not
just vectorizable programs, but also code containing recurrences and data dependent control flow. This
paper presents an overview of the compiler optimizations that are crucial in harnessing the computation
power of superacalar machines. These optimizations include high-level loop transformations to find
parallelism and improve the efficiency of caches, software pipelining and hierarchical reduction
techniques for scheduling instrctions, and modulo variable expansion for assigning registers.

Rect advances in hardware technology have mad superscalar architectures amenable to single-chip
implemntations. The combination of cheap hardware to provide a high raw computing power and
sophisticated compiler technology to effectively use the parallelism can produce extremely low-cost,
high-performance workstations that are easily accessible to the general scientific and engineering
community.

1. Introduction
A superscalar computer is a uniprocessor that can execute two or more scalar operations in parallel.

The operations are individually specified in the object code; this is distinct from vector machines which
expand vector instructions into series of parallel operations. The parallelism of a vector instruction is
defined for each vector machine at machine design time; on a superscalar machine, a parallel execution
schedule is created uniquely for each program, by either hardware or software. As a result, superacalar
machine organizations are more versatile and effective in using the hardware resources in the system.

Superucalar machines existed long before the term was coined. The IBM Stretch [5], the CDC
6600 (24] and the IBM 360/91 [2] are all superacalar architectures that can execute multiple operations in
paralleL These machines all implement a sequential instruction set with hardware that schedules the
instructions dynamically. Besides hardware, software has also been used for instruction scheduling.
Epitomizing the class of superscAlar machines that rely on software for scheduling instructions is the
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VLIW (Very Long Instruction Word) architecture [13]. Each wide instruction word explicitly specifies

the operations to be executed in parallel. Examples of such machines include the Multiflow's Trace
machines [8], the Carnegie Mellon's processors for the Warp systolic array [3] and the Cydrome's Cydra

5 [9]. The recent hardware technology advances have made software scheduled superscalar architectures
amenable to single-chip implementations. A follow-on of the Warp processor, the Carnegie Mellon and

Intel's iWarp processor integrates high-performance computation and systolic communication in a single

component [6]. The Intel's i860 is a single-chip microprocessor that can perform up to 100 million

floating-point per seconds (MFLOPS) using a dual-instruction word format [17].

The development of the recent superscalar architectures presents an exciting prospect to the engineering

and scientific community. As technology improves, the superscalar processor performance is expected to
grow. The superscalar processor provides a more flexible form of instruction parallelism in a low-cost

package. The impact is that high computing power can be easily provided in a low-cost desktop
workstation that is widely accessible to engineers and scientists. The high-level of integration also makes

these scalar processors a useful building block for large-scale multiprocessing, thus delivering an
aggregate computation bandwidth higher than ever before.

The parallelism of a supercalar machine may be managed in hardware or software. The hardware

approach schedules the instructions dynamically, thus hiding parallelism from the architecture. The

instruction set architecture can therefore be made compatible with that of an existing sequential machine.

Run-time scheduling, however, requires more hardware logic, which may result in a slower clock cycle or
longer latency in instruction execution. In the software approach, the parallelism is exposed at the

architecture level, and the compiler is responsible for specifying the parallel operations to execute. By

analyzing the entire program statically, the compiler can exploit higher level program semantics and
rearrange the code globally to derive a better schedule.

To harness the raw computing speeds of software-scheduled superscalar processor in applications,
compiler technology is crucial. The compiler hides the parallelism from the programmer, so the

programmer can develop applications easily using a high-level sequential language. This approach has

the additional advantage that the same sequential programs can now easily be ported to other current and

future machine architectures.

In this paper, we first describe the characteristics of the superscalar architecture and the issues in

compiling code for such machines. We then present a set of compiler optimizations, showing how the

functionality of the processor can be used in programs. We then close with a discussion on the

performance of these superscalar machines.

2. Superscalar Architectures

Common to all superscalar processors is the presence of parallel and/or pipelined functional units. Like

any machine that employs parallelism and pipelining, a program running on a superscalar seldom

achieves the peak computation rate of the machine. If a superscalar processor has n functional units, or a

functional unit with n pipeline stages, n independent operations must be present at all times to utilize the
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machine fully. If no parallelism is found, the machine may operate at 1/nth of the peak rate. Therefore,

for a superscalar to be effective, it is important that the scheduler can find enough independent operations

to execute in parallel.

Before we discuss the scheduling techniques, let us first take a look at the fundamental limit the

hardware imposes on the execution speed of a program. Even if there are enough independent operations,

the full computation power of a superscalar may not be brought to bear on an application because of

specialization. The processor typically consists of a set of specialized functional units, some memory

access units, possibly different arithmetic units, and an instruction branch control unit. For example, a

program that requires no multiplications will not be able to take advantage of the multiplication unit on

the processor.

The hardware of a system is typically designed such that the distribution of the computational units

matches the distribution of operations in a typical program. From the statistics of a large set of numerical
applications [18], we have observed that there are about as many floating-point arithmetic operations as

memory operations. About 60% of the memory operations are read operations, and about 70% of the

floating-point operations are additions. On a machine that can execute one memory read, one memory

write, one floating-point addition, and one floating-point multiplication in a single cycle, the adder is

often the critical resource and is followed by the memory read unit.

Besides the utilization of the functional units in a processor, it is also important to consider the memory
subsystem. To support a high computation bandwidth, a processor must also have a similarly powerful

memory subsystem. For a vector machine, the more restricted mode of operation permits the use of
vector registers and efficient block transfers between the memory subsystem and the registers. Being able

to support a less regular form of parallelism, a superscalar architecture requires a more flexible memory

system. The concept of memory hierarchy has been shown to be useful in reducing the average access

latencies for general-purpose machines. A cache can also reduce the number of memory accesses which

can be important in a multiprocessor environment.

Unfortunately, a cache sometimes behaves rather poorly for numerical code. Because of the large data
set used, data brought into the cache may be flushed out before they are reused. The cache hit rate can

fluctuate widely depending on, for example, whether a matrix operand is in the cache. This may greatly

affect the overall speed obtained due to the large difference between cache and memory speeds. While a

cache is normally transparent to compilers for general-purpose programs, it is beneficial to optimize the

cache behavior in superscalar compilers.

In many ways, a superscalar compiler faces similar issues as those of a vectoriing compiler. The
compiler must extract parallelism from sequential programs and try to use the parallel, specialized

functional units effectively. The compiler must also manage the cache; this is analogous to the

management of vector registers in vectorizing compilers. Though the issues are similar, a superscalar

machine presents new challenges to compiler optimization. The parallelism must be managed at the

scalar operation level and the parallelism exploitable is not regular like vector instructions.

167



3. Overview of Compiler Techniques

There are two levels of compiler optimization: the loop level and the instruction level. The loop level
involves higher level transformations on the loop structure. These transformations are useful both for
bringing parallelism to the innermost loop as well as improving data locality. This high-level
restricturing prepares the loop for low-level instruction scheduling.

The instruction level optimization consists of instruction scheduling and register assignment
techniques. The scheduling problem is to find the shortest instruction schedule that satisfies the
constraints imposed by the machine resources and the program semantics. In particular, since most of the
computation time is spent on innermost loops, it is important to schedule such loops efficiently. Software
pipelining is a scheduling technique that exploits the repetitive nature of innermost loops to generate
highly efficient code for processors with parallel, pipelined functional units [19,22,25]. Another code
scheduling technique used with software pipelining is hierarchical reduction, a technique that abstracts
control constructs as operations in a basic block, so the same scheduling algorithms can be applied to
within and across basic blocks. For example, using hierarchical reduction, software pipelining can be
applied to all innermost loops, including those containing conditional statements. Hierarchical reduction
makes it possible to obtain a consistent performance improvement for many more programs. Interacting
with code scheduling is register assignment. When the same register is assigned to different variables,
their uses must be serialized, thus constraining the parallelism in the computation. Therefore, the register
assignment must also be considered hand-in-hand with instruction scheduling.

In the following, we first present an overview of the analysis techniques necessary to support both loop
level and instruction level parallelism. We then discuss each of the optimizations: loop level
transformations, software pipelining, hierarchical reduction and register assignment.

Program semantics produces two kinds of constraints: control dependences and data dependences. A
conditional branch instruction must first be executed to determine the instruction to execute next. This
sequencing constraint is known as control dependence. An operation cannot execute until all its operands
are produced. This sequencing constraint is known as true data dependence. To ensure that a read
operation always reads the latest value produced, the order of the write operations on the same location
must also be observed. This sequencing constraint is known as output dependence. Furthermore, since a
data location may hold different values at different times, a value must not be overwritten before its use.
This form of data dependence is known as anti-dependence.

The compiler must first extract dependence constraints from the program. The analysis algorithms are
similar to those previously used for vectorizing and concurrentizing compilers. The control dependence
can either be obtained through analysis of the flow graph [11], or simply retained from the syntactic
control structure of the program [16]. For data dependence, since array references are very common in
numerical code, it is important to determine if two array references can refer to the same location, and

thus may share a dependence relationship between them. Various dependence tests have been proposed
for disambiguating between array references whose indices are an affine function of loop
indices [1, 4, 27].
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The dependence information was used previously only for source-to-source loop transformations. For a

superscalar machine, this information is used at both the loop and instruction level. In the compiler
currently developed at Stanford, data dependence is captured in an intermediate representation that
supports loop level transformations, and this same information can be used in the code generation phase.

4. Loop Level Transformations

High level code transformations are useful in bringing parallelism into the innermost loop, as well as
improving the efficiency of the caches. Consider the simple example of a matrix multiplication:

FOR i :- 0 TO n-I DO
FOR j :- 0 TO n-I DO

FOR k :- 0 TO n-I DO
C[i,j] :- A[i,k]*B[k,j]+C[i,j];

The result of one addition is used by the addition in the next iteration of the loop. The additions must
therefore execute sequentially; with an n-stage pipelined adder, an iteration takes at least n clocks. The
multiplications, being independent, can execute in parallel with the additions. (Unlike a vector machine,
a superscalar machine can execute some instructions in parallel even for recurrences.) To further increase

the utilization of the machine, the compiler must perform higher level transformations so as to expose
more parallelism in the innermost loop to the instruction scheduler. In this example, if the inner two
loops are interchanged as follows:

FOR i :- 0 TO n-i DO
FOR k :- 0 TO n-i DO

FOR j :- 0 TO n-1 DO
C(i,j] :- A~i,k]*B[k,j]+C[i,j];

The iterations in the innermost Ip are now independent as many iterations as necessary can execute in
parallel to fully utilize the hardware resources of the machine. Therefore, when the innermost loop does
not contain enough parallel operations to keep the hardware resources busy, high level transformations,
similar to those used in vectorizing and parallelizing compilers, should be applied.

For superscalar machines with caches, high level transformations can also be used to improve overall

performance by reducing the cache miss rate. Consider a machine whose cache is relative small in
comparison with the matrix size. The objective of the optimization is to minimize memory accesses by
reusing data in the cache as much as possible. In the optimized program above, the innermost loop
accesses rows k and i of matrices B and C, respectively. The same row of C is used in the next outer
loop, but the B data will not be reused until the next iteration in the outermost loop. If the data size is
large compared to the cache, even the C data may not be in the cache, let alone the B data. Maximum
reuse is obtained if we can block, or tile, the computation as follows:

FOR ii :- 0 TO n-1 BY b DO
FOR kk :- 0 TO n-1 BY b DO

FOR jj :- 0 TO n-1 BY b DO
FOR i :- ii TO min(ii+b-1, n) DO

FOR k :- kk TO min(kk+b-1, n) DO
FOR j :- jj TO min(jj+b-1, n) DO

C[i,j] :- A[i,k]*B(k,j]+C~i,J];
Each of the matrix elements brought into the cache is reused b times before it is removed from the cache.

The value of b is chosen to maximize the cache utilization.
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Previous research on data locality has provided ways to predict the cache behavior of a loop nest.
Gannon et al. [14] use uniformly generated references to find where locality exists in a nesting of loops.
They also discuss how to choose which array elements should go into the cache for a given loop.
Porterfield [21] estimates cache behavior for a loop nest assuming that the cache uses the least recently
used replacement policy, and may block a loop if the cache cannot hold all the data in an iteration.
Gannon et al's and Porterfield's estimates can be used to evaluate the data locality of entire loop nests

obtained by different sets of transformations.

Loop transformations beneficial to data locality and parallelism for superscalar machines include loop
interchange, reversal, skewing and tiling. Wolf and I have developed an efficient algorithm to search
through the space of these transformations and generates code that displays data locality and parallelism
in the innermost loops [26]. We reduce the optimization problem to placing the maximum number of

loops identified to carry locality in the innermost tile. Using this goal and the legality considerations of
tiling, we can significantly prune the search space to find the best set of transformations. How tiling
improves data locality has been illustrated by the example above. The conditions that made tiling legal in
the first place guarantee both coarse and fine grain parallelism within a tiled loop. Therefore, by tiling the
loops, we generate code that exhibits both data locality and parallelism.

5. Software Pipelining

After performing the high-level transformations, the compiler can then apply the instruction level
optimizations. The basic technique for obtaining parallelism is software pipelining. Let us introduce the
concept of software pipelining by way of an example. Suppose we have a machine that can perform one
load, one store, and initiate a 7-stage pipelined floating operation in one instruction, and suppose the code
we want to execute is:

FOR i :- 1 TO n DO
A[i] :- A[i]+1.0;

Assume for now that we can generate the addresses for the loads and stores in parallel with the rest of the
computation; the specifics of this topic will be discussed in Section 7. The most compact instruction
sequence to execute a single iteration of this loop is given in Figure 5-1. The operation BLoop 1

branches back to label 1 if there are more iterations to execute. The schedule is sparse due to the heavy
pipelining in the data path. (For machines with hardware interlocks, the nop instructions are used only at
code scheduling time; they are omitted when the code is emitted.) If we simply iterate this schedule, the
throughput of the loop is only I iteration every 9 clock ticks, and no resources are used more than 1/9th of

the time.

1: LD
FADD
hop
fop
nop
fop
nop
nop
ST BLoop 1

Figure 5-1: Object code for one iteration in example program
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Techniques such as trace scheduling [12] depend on loop unrolling to generate enough parallel
instructions to schedule. Suppose the loop body of the example is unrolled 9 times, the optimal schedule

of th body of the unrolled loop is shown in Figure 5-2. (This instruction sequence assumes that the

number of iterations is divisible by 9.) Each row in the figure corresponds to operations in an instruction,
and each column corresponds to the computation of one iteration of the loop in the source prograv

Unrolling the loop 9 times improves the throughput to 9 iterations every 17 clocks. From the figure, it is

clear that unrolling an additional iteration will only lengthen the schedule by one clock. This can be kept
up until the iterations run out. A loop unrolled u times will have a throughput rate of u/(u+8) iterations

per clock, while the ideal throughput is I iteration per clock.

1: LD
FADD LD

FADD LD
FADD LD

FADD LD
FADD LD

FADD LD
FADD LD

ST FADD LD
ST FADD

ST
ST

ST
ST

ST
ST

ST Bloop 1

Figure 5-2: Optimal schedule for nine iterations

Although the schedule improves as we unroll more iterations, code expansion limits the degree of

unrolling. Unrolling can therefore overlap only a small finite number of iterations; all the unrolled
iterations must complete before the program branches back to another set of contiguous iterations. On a
vector machine, such a loop maps directly into a vector instruction; a vector instruction can continually

overlap operations from successive iterations to deliver a throughput of one iteration per clock cycle.

Software pipelining can achieve the same kind of performance obtained with vector instructions by
continually overlapping operations from different iterations of a loop. The software pipelined program

for the example above is shown in Figure 5-3. Code generated by software pipelining is compact. The
code in the figure assumes that there are at least nine iterations in the loop. The first eight instructions
constitute the prolog where more and more iterations of the loop start to execute. The steady state is

reached after eight instructions, and is repeated until all iterations have been initiated. In the steady state,
nine iterations are in progress at the same time, with one iteration starting up and one finishing off every

clock. On leaving the steady state, the iterations currently in progress are completed in the epilog, the
10th through 17th instructions. This program achieves the optimal computation time by executing n

iterations in n+8 clock ticks, where n is the number of iterations in the loop.

Software pipelining is different from loop unrolling in that a source iteration may span one or more

iterations in the object code. If the machine contains pipelined functional units, the pipeline stages need
not be emptied at iteration boundaries. In the example above, seven additions initiated in seven different
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LD
FAD LD

FAD LD
FAD LD

FAD LD
FADD LL

FAD LD
FADS LD

1: ST FADD LD BLoop 1
ST FADD

ST
ST

ST
ST

ST
ST

ST

Figure 5-3: Program of a software pipelined loop

iterations execute in parallel. The hardware pipelines are filled and drained only once on entering and

exiting the loop, respectively. Software pipelining is especially beneficial for machines with high degrees
of parallelism and specialization. The results are that optimal throughput can be achieved, and achieved
with an extremely compact program.

5.1. The Problem

In this section, we first concentrate on the scheduling of loops containing a single basic blocks.

Extending software pipelining to other loops is discussed with hierarchical reduction in the next section.

The primary goal of software pipelining is to maximize the throughput in executing the iterations; it does

not matter if the execution time of individual iterations is lengthened. Its secondary goal is to keep the

code size down. In other words, the schedule must have a short steady state so that it can be captured in a

relatively succinct code sequence. The problem is thus formulated as fimding a common schedule for all

iterations of the source loop, such that successive iterations are initiated with a constant interval, and the
objective is to minimize this interval. In the example above, the schedule of an iteration is given in

Figure 5-1, and the iteration initiation interval is one.

Software pipelining was originally derived from a technique for scheduling hardware pipelines, where

the problem was formulated as inserting delays between hardware units to increase the overall throughput
of the system [20]. New input is accepted by the hardware pipeline at regular periodic intervals. The

software analog is to schedule operations within an iteration such that the iterations can be pipelined to
yield optimal throughput.

Software pipelining has been used in compilers for several different architectures. The algorithm was
first used in the ESL polycyclic architecture [22]. The polycyclic machine uses a specialized crossbar to

simplify the scheduling problem for a subset of loops [23]. The same concept is also implemented in

Cydrome's Cydra 5 [9]. Software pipelining is also used in the compiler for the FPS-164 machine [25).

The FPS-164 does not have any specialized support for software pipelining, and software heuristics are

used to schedule the loops. We improved upon the FPS heuristics, especially in the algorithm for
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scheduling recurrences, and implemented them in our compilers [7, 19] for the Carnegie Mellon's Warp
and iWarp machines. Eisenbeis et al. applied software pipelining to the problem of scheduling vector
instructions, and implemented a compiler that generates software pipelined vector code for the Cray-2
architecture [10].

Let us first describe some of the fundamental limits in scheduling a loop. There are two kinds of
constraints: resource and precedence constraints.

Resource Constraints. Suppose a machine has m(r) units of resource r, and an iteration of a loop
requires n(r) units of resource r, then a pipelined loop cannot execute faster than the rate of at most one
iteration every

Fn() 1

cycles. This equation reconfirms the notion that it is harder to y utilize highly specialized functional
units and the computation rate is limited by the resource with the highest demand.

In software pipelining, we must ensure that the resource commitment in each clock cycle of the steady
state does not exceed the available resources. The resource usage of the steady state can be represented

by a modulo resource reservation table whose ith entry contains the sum of the resources used in cycles
i,I+s, +2s.... of the schedule of an iteration, where s is the initiation interval of the loop.

Precedence constraints. While recurrences limit the throughput of the computation, a superscalar,

unlike a vector machine, can often still find some parallelism in such loops. Consider the following
example:

FOR i -I to 100 DO
a a + 1.0;

We must first read a before we write back into a in the same iteration, which in turn must precede the

read operation in the next iteration. The flow graph representing the above example, assuming a seven-
staged addition, is shown in Figure 5-4. Each edge is labeled by the number of iterations the dependence
crosses and the delay between them. As shown in the figure, inter-iteration data dependences may
introduce cycles into the precedence constraint graph. The precedence constraints in Figure 5-4 impose a
delay of 9 clock ticks between load operations from consecutive iterations. That is, loops cannot execute
at a rate greater than one iteration every 9 clocks.

We define the minimum delay, d, and minimum iteration difference, p, of a path to be the sum of the
minimum delays and minimum iteration differences of the edges in the path, respectively. If we let c
denote a cycle in the graph, the rate at which the iterations can be executed is one iteration every

rd(c) 1

cycles.

The maximum of the two bounds determined by resource and precedence considerations establishes a
lower bound on the initiation interval. lerefore, a schedule that pipelines with an initiation interval

173



Read a

161
Addt • ed a <l)l>

Write a ~A" ~ <1
1 Read <0,7>

1 uWite aQ-
Add

7

writte a

(a) (b)

Figure 54: (a) Delays between operations from two iterations, and (b) precedence graph

meeting the lower bound is optimal. Empirical results show that this lower bound can indeed be met in

many cases [18].

5.2. The Algorithm
The problem of finding the optimal software pipeline schedule is NP-complete. For acyclic graphs, the

scheduling problem is tractable if operations execute in unit time and use only one resource. The

polycyclic architecture [221 and the Cydra 5 architecture [9] use a specialized, rather expensive crossbar

to provide exactly that property. All functional units of a polycyclic machine are interconnected through

a crossbar. This crossbar has storage at every crosspoint to serve as a dedicated buffer for each pair of

functional units. Therefore, there is never any contention in reading or writing data. Each operation thus

consumes only one explicitly scheduled resource. For acyclic graphs, the minimum initiation interval is

given by the bound discussed above and an optimal schedule can easily be found. However, the problem

remains NP-complete for cyclic graphs even if operations use one unit of resource and execute in one unit

time.

Without the specialized hardware to support software pipelining, both the FPS and the Warp/iWarp

compilers use software heuristics. The algorithms used for scheduling &cyclic graphs are similar, but the
cyclic graph scheduling algorithm is significantly improved in our Warp/iWarp compilers. The algorithm

for acyclic graphs is as follows: First, establish a lower and an upper bound on the initiation interval.

The lower bound is calculated from the resource and precedence constraints; the upper bound can be

found by the schedule of a single loop iteration. Next, find the smallest initiation interval. Simple linear

search is used in our WaipfiWarp compiler because empirical results show that a schedule meeting the

lower bound can often be found. The algorithm first sets the target of the initiation interval to be the

lower bound value, and attempts to find a pipelinable schedule for the target initiation interval using the
method described below. If the attempt fails, this process is reiterated by increasing the target initiation

interval by one clock tick at a time

The basic algorithm used to find a software pipelinable schedule for a target initiation is list scheduling.

In list scheduling, the precedence constraints are applied first to determine the earliest slot in which an

operation can be scheduled. The scheduler then goes on to try to satisfy the resource constraints; the
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modulo resource reservation table defined above is used to determine if there is a resource conflict. The

scheduler tries to schedule the operation in successive time slots until one that can accommodate its

resource requirement is found. If s is the target initiation interval, and s attempts to satisfy the resource

constraints fail, by the definition of modulo resource usage, this operation cannot fit into the schedule

built so far. When this happens, the attempt to find a schedule for the given initiation interval is aborted

and the scheduling process is repeated with a greater interval value.

As in the case of acyclic graphs, the main scheduling step for cyclic graphs is iterative. For each target

initiation interval, the strongly connected components are first scheduled incividually. The original graph

is then reduced by representing each strongly connected component as a single vertex: the resource usage

of the vertex represents the aggregate resource usage of its components, and edges connecting nodes from

different connected components are represented by edges between the corresponding vertices. This

reduced graph is acyclic, and the acyclic graph scheduling algorithm can then be applied.

Two main concepts are used in the algorithm for scheduling the strongly connected components. First,

the precedence constraints are preprocessed so that the scheduler can easily determine the legal time span

in which any node can be scheduled. Second, the order in which the instructions are scheduled is

designed such that when the target initiation interval value is increased, the chance for success also

improves. Tis is important because it would be futile if the scheduling algorithm simply retried the same

schedule that failed.

A large set of evaluation data on the Warp/iWarp machine indicates that provably optimal schedules

can often be found [18]. This shows that software pipelining does not require expensive hardware

support. The code generated is compact; the body of a software pipelined loop is even shorter than the

unoptimized code.

6. Hierarchical Reduction

The hierarchical reduction technique is designed to make software pipelining applicable to all

innermost loops, including those containing conditional statements. The proposed approach schedules the

program hierarchically, starting with the innermost control constructs. As each construct is scheduled, the

entire construct is reduced to a simple node representing all the scheduling constraints of its components

with other constructs. This node can then be scheduled just like a simple node within the surrounding

control construct. The scheduling process is complete when an entire program is reduced to a single

node.

The use of the construct structure exploits high-level control dependence knowledge (11] to increase

the opportunity for code motion. As an example of the kind of code motions achievable with this

technique, consider the following program:
TOR i :- 0 to n DO
BEGIN

statement 1;
IF C THEN statement 2 ELSE statement 3;
statement 4;

END
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Although statement 4 comes after the conditional statement, it is not control dependent upon the result of

the condition c. Once the program decides to execute another iteration, it can execute statements 1 and 4

in any order that satisfies the data dependences. For example, an operation in statement 4 can be executed
before the conditional statement. The hierarchical reduction algorithm first schedules the THEN and

ELSE parts of the conditional statement, and represents the entire construct with a single node that
inherits the union of the scheduling constraints for each of the two parts of the conditional statement. The

entire construct is then scheduled with statements I and 4. Operations corresponding to statements 1 and

4 may be reordered, they may also execute in parallel with the THEN and ELSE components of the

conditional statement. At code emission time, any code scheduled in parallel with the conditional
statement is duplicated in both the THEN and ELSE parts.

This control dependence knowledge when combined with software pipelining can produce surprisingly

efficient code. The loop termination test for the next iteration can be performed immediately after the

decision to execute the current iteration. This test can move past all the conditional branches in the body

of the loop. In this way, hierarchical reduction exposes many more parallel operations for scheduling.

Hierarchical reduction also minimizes the penalty of short vectors, or loops with small number of

iterations. The prolog and epilog of a loop can be overlapped with scalar operations outside the loop; the

epilog of a loop can be overlapped with the prolog of the next loop; lastly, software pipelining can be

applied even to an outer loop. In summary, hierarchical reduction makes it possible to exploit parallelism

in a much larger set of applications. It allows loops containing conditional statements to be software
pipelined, and it finds parallelism within loop bodies that are too long to pipeline.

7. Modulo Variable Expansion

If traditional register assignment were performed before code scheduling, then the reuse of registers for

different variables would significantly reduce the potential parallelism in the code. This is because the

objective of register assignment is to use as few registers as possible. A register is recycled in the shortest
amount of time, thus creating many more data dependences that need to be observed. Cooperation is

therefore required between code scheduling and register assignment in a superscalar compiler. Proposed

strategies include combining register assignment with scheduling [15], and postponing register

assignment until after scheduling [18]. The latter approach simplifies the compiler design by separating

scheduling and register assignment into two different phases. The drawback, however, is that there may
not be enough registers and code needs to be inserted to spill values to memory.

There is one form of register reuse that can greatly inhibit parallelization, and that is the us,- of the same

register for the same variable in different iterations of a loop. To illustrate this point, let us use the same

example:
FOR i:- 0 TO n DO

A~i] :- A[i]+1.0;

For the sake of simplicity, here we assume that a floating-point addition takes only two clocks. The
object code for one iteration, complete with register assignment, is ab ollows.
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# RI preloaded with address of A
# FR7 preloaded with 1.0

LD FRI, (RI)
FADD FR1,FR7
nop
ST FRI, (RI)
ADD R1,R1,4

The register assignment prevents this vectorizable loop from executing in parallel. The register FR1

cannot be loaded with the next input until after its last use in the previous iteration. Similarly, the register
Ri cannot be incremented until the last store operation is performed. Anti-dependences force the write

operations to follow all the read operations of the old values; consequently, the computation must execute

serially.

Modulo variable expanion is a register assignment technique that eliminates these anti-dependences.

The following is the result of applying the combination of software pipelining and modulo variable

expansion to the example above.

# R1 preloaded with address of A
# FR7 preloaded with 1.0

LD FR1, (Ri)
FADD FRI,FR7 ADD R2,RI,4

1: LD FR2, (R2)
ST FRI, (RI) FADD FR2,FR7 ADD RI,R2,4

LD FRI, (Ri)
ST FR2,(R2) FADD FR1,FR7 ADD R2,R1,4 BLoop 1

nop
ST FRi, (R1)

To eliminate the anti-dependence constraint, the second iteration uses a different set of registers, R2

and FR2, and can thus overlap with the first. The third iteration, on the other hand, can reuse the set in

the first iteration. In fact, every other iteration can use the same set of registers, making the code identical

every two consecutive iterations. The length of the steady state is just twice the initiation interval and the
loop body is therefore still very compact.

We call this optimization of assigning several registers to a loop variable modulo variable expansion.

In vectorizing compilers, scalar variables are expanded into arrays so that each iteration refers to a

different array element, making the loop vectorizable. Modulo variable expansion takes advantage of the

flexibility of superscalar machines, and reduces the number of registers allocated to a variable by reusing

the same location in non-overlapping iterations.

A tradeoff can be made between the degree of loop unrolling and the number of registers used. For the

Warp machine which contains a relatively large number of registers, minimizing the degree of unrolling is
a better choice [19], Eisenbeis et al., or. the other hand, minimizes register usage because their target

machine, Cray-2, has only eight vector registers [10].
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8. Performance of Superscalar Machines

Having functional units that can be explicitly controlled by software, a superscalar processor is more
versatile than a vector machine. The parallelism on a vector machine is restricted to the set of vector
instructions, and, if chaining is supported, parallelism between vector instructions that use different

functional units. Using software pipelining to schedule a superscalar with similar functional units, a
simple loop that corresponds to a vector instruction, such as the pairwise additions of two vectors, can
execute at the same throughput rate as a vector instruction. In addition, a superscalar can find parallelism
in complex loops. Loops do not need to be decomposed into simple vector instuctions which require
partial expressions be buffered in vector registers. More importantly, a superscalar can find parallelism in
loops with recurrences and conditional statements.

The ability of a superscalar machine to execute custom generated parallel code eliminates the need for

buffering vectors of partial results. For example, a vectorizing compiler must decompose the loop in
Figure 8-1(a) into two, each corresponding to a vector-add instruction (Figure 8-1 (b)). The partial sums
must be buffered in a vector register. On a superscalar machine, the partial results can be operated on as
soon as they are generated, as illustrated in Figure 8-1(c). This reduces the number of registers needed
and possibly memory accesses.

(a) FOR i 0 TO n DO BEGIN
c[i] :- a[i]+b[i]+c[i];

END;

(b) FOR i :- 0 TO n DO BEGIN
t[i] a[i]+b[i];

END;
FOR i 0 TO n DO BEGIN

c[i] : t[i]+c~i];

END;

(c) FOR i 0 TO n DO BEGIN
t a[il+b(i];
c[i] :- t+c[i];

END;

Figure 8-1: Reduced register requirement in superscalar machines
(a) source program, (b) vector code, (c) scalar code.

A recurrence does not necessarily mean serial execution for superscalar machines. As long as there are
other operations that can execute in parallel with the recurrence computation, a high computation rate can
still be obtained using software pipelining. The degree of parallelism in a vectorized loop is of the order
of the number of iterations in the loop. A recurrence, however, limits the degree of parallelism by the
ratio of independent operations to the length of the cyclic dependence. This limited form of parallelism
can be exploited in superscalar processors because of their unique zero synchronization overhead. The
compiler strategy for superscalar machines is different from that for vector machines. A vecto-izing

compiler tries to decompose a loop into smaller loops, separating recurrences from vectorizable loops. A

superscalar compiler, on the other hand, tries to jam independent loops together. The vectorizable loop

may be executed on the idle functional units while the program computes a recurrencel

In addition to recurrences, hierarchical reduction allows us to find parallelism even in loops with
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conditional statements. Hierarchical reduction also reduces the penalty typically associated with short
vectors. In a superscalar machine, the scalar operations can be overlapped with the prolog and epilog of a

software pipelined loop. This easy integration of scalar and vector operations makes the performance of

the system less sensitive to the size of the data. Moreover, software pipelining can be applied even to

outer loops, making the advantages of software pipelining applicable even for programs containing short
innermost loops.

The instruction scheduling and register assignment techniques have been implemented in the compilers

for the Warp and iWarp machines, and have been extensively evaluated [18]. The Warp processor has a
peak computation rate of 10 MFLOPS, an impressive performance for a machine built in 1986. This peak

computation rate is achieved by a high degree of parallelism and specialization. In a single instruction, a

Warp processor can perform one 7-staged floating-point addition, one 7-staged floating-point
multiplication, one memory read, one memory write, two integer operations, and one branch operation.

We have analyzed the performance of a set of seventy-two programs and the Livermore kernels. The

performance of most of the programs fall between the I to 4 MFLOPS range, with a 2.8 MFLOPS

average. This utilization of resources is higher than that typically observed in supercomputers.

Performance analysis of the software pipeliner shows that the scheduler is successful in exploiting

parallelism once the parallelism is detected. About three-quarters of over one hundred loops pipelined are

provably optimal. When compared with code generated by a compiler that finds parallelism only within a
basic block, most of the loops achieve a speed up of between two and six.

9. Conclusions

This paper presents an overview of compiler optimizations that exploit parallelism in a superscalar
machine. High-level loop transformations improve data locality and place parallelism in the innermost

loops, in preparation for instruction level optimizations. Software pipelining is the basic technique that

finds parallelism across iterations in inner loops. Hierarchical reduction helps deliver a high level of

performance for a broader range of applications, for example, by permitting software pipelining to be

used even for loops with conditional statements. And lastly, modulo variable expansion eliminates

dependence constraints due to reuse of registers between iterations.

The superscalar architecture is a promising alternative to vector machines. We now have compiler

techniques that can generate highly efficient parallel code directly from user programs. Given the same

hardware functional units, a superscalar machine delivers the same performance of a vector machine if the

program is vectorizable. And the superscalar machine is decidably superior to vector machines when the

computation contains recurrences and conditional statements. A superscalar does not exhibit a dichotomy

in performance depending on whether the code is vectorizable or not.

Compiler optimizations require programs to be analyzable statically. A superscalar architecture has an

organization that is more easily enhanced to handle programs that are not amenable to static analysis. By
a judicious use of hardware to provide dynamic information to cooperating software, processors that

deliver a consistent high-performance through instruction level parallelism are possible.
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Abstract

Parallel computer architectures and hardware have evolved impressively in the last few years
from the architecture and the hardware point of view. Progress on the software side can be best
characterized as moderate. The lack of widely acceptable methodologies and software to support
parallel programming is profound even on the most advanced parallel machines. Parallel pro-
gramming is a complex task and the performance of a parallel program can be influenced by
many different factors such as coding of parallel constructs and/or restructuring, scheduling
schemes and scheduling overhead, synchronization and/or communication cost, program and
data partitioning and memory allocation. In this paper we discuss the major aspects of parallel
programming. Parallel programming environments are considered in three fundamental phases:
parallelism specification, parallelism exploitation, and supporting environments and tools. A paral-
lel programming environment built at the University of illinois is discussed as a case study.
Finally, we address the influence of parallel programming on multiprocessor operating systems,
and discuss future research directions.

This work was supported in part by the National Science Foundation under Grant NSF MIP-8410110, the U.S.
Department of Energy under Grant DE-FG02-85ER25001, a Grant from AT&T, and a 1989 NSF-PYI Grant.
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1. Introduction
High-speed computers often referred to as supercomputers have invaded such fields as animation and

advertising, graphics and industrial computer-aided design, and other business applications, let alone more
traditional fields such as weather forecasting, seismic modeling and oil exploration, fluid dynamics, nuclear
physics, and other numeric-intensive applications in scierci and engineering. With more computational
power available, scientists can study problems which previously were impossible to model, or increase the
sie, and thus the accuracy of models for scientific and engineering problems which are already in use.

Traditionally, increased computing power has been achieved through more advanced technologies
that allowed higher degrees of integration and switching speeds, more efficient packaging and cooling and
so on. Even though there is still room for improvement in switching speeds and integration through the
evolution of new technologies, the improvement strides will probably be less significant than in the past,
and will soon be limited due to physical barriers. Nevertheless, the demand for more powerful computer
systems keeps increasing and even today's most powerful supercomputers are unable to solve certain prob-
lems in a reasonable time period. This limitation prompted researchers to investigate architectural
approaches to increased computing speeds through new designs and enhancements at the component level.
Some of these architectural solutions were more or less radical to the conventional "Yon Neuman" architec-
ture. An obvious approach and one which has gained much ground, is increasing performance through the
replication of conventional processing elements, which work in a coordinated manner and communicate
with each other through some type of an interconnection network.

These computer systems, well-known as parallel processors or multiprocessor machines, are the sub-
ject of this paper. We focus on their software aspects, and more specifically on the programming issues of
parallel computers. A tremendous amount of research and hardware development of such machines has
been done from the early days of computing. Many different architectures have been proposed and many of
them have cuiminated with prototypes or commercial systems. Up until the last few years however, the
software aspects of parallel machines had been overlooked. This lead to a point where very powerful paral-
lel machines can be built but cannot be used to their fullest potential. Software support for programming
these systems was minimal up until recently, and it is still inadequate.

Although this has become apparent and has attracted attention on the fundamental issues of parallel
programming, we are still far from understanding the general and global nature of the problem called
parallel programming. We have only begun to see parallel languages, let alone standards, portability, and
programming tools. Of course parallel programming as a relatively new field has not matured yet. Many
crucial problems remain unsolved or partially solved. It is true that in parallel programming one faces
more complex problems that in serial programming. Another issue that adds more complexity to parallel
programming is the variety of architectural models of parallel machines that have not yet been (or cannot
be) abstracted from the programming level. For example, our knowledge as to whether our target model is
a distributed or shared memory model has profound ramifications even at the algorithm design level (and
of course at the program development level). After all, it may not be even possible to reach the same
abstraction and portability levels for parallel programming, as the case has been for serial programming.
In the former case the primary targets are efficiency and speed which bring parallel programming closer to
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the machine level. Compromising speed and efficiency for portability and productivity may not be a desir-
able solution.

2. Organlsatlon

In this paper we review and discuss many aspects of parallel programming and summarize recent
approaches to some of the fundamental issues. Section 3 gives a summary of parallel computer architec-
tures but the rest of the paper focuses on software aspects of parallel programming. Section 4 gives a
high-level discussion of parallel programming where the most important issues are identified and dis-
cussed. The following sections focus on each particular aspect of parallel programming and present some of
the most recent approaches to solving each of them. More attention is placed on parallel languages, paral-
lelising compilers, and scheduling.

In particular, Section 5 highlights the main concurrency features of a number of parallel program-
ming languages and systems. Section 6 discusses parallel programming through automatic program res-
tructuring, and gives examples of the application of a few representative transformations. Section 7 goes
into more detail with parallelism exploitation issues such as partitioning, synchronisation, and scheduling.
Different approaches to the general scheduling problem are considered, and loop scheduling is examined in
more detail.

Section 8 gives an overview of our approach to some of the above issues in the context of the
Parafrase-2 project. A novel and comprehensive environment for automating the parallelism exploitation
phase is discussed. Section 9 considers multiprocessor operating system issues, and provides a multiproces-
sor operating system taxonomy based on three important functionalities. Finally, some concluding
remarks are given in Section 10.

3. Parallel Computer Architectures

In order to identify the class of computer architectures which are the subject of this discussion, we
shall briefly review and classify computer architectures which support some sort of concurrent or parallel
processing in the context mentioned above. A typical serial computer is based on the principle of control
flow where instructions are executed one at a time in a predefined order; each program is viewed as a single
instruction stream. A program counter points to the current instruction to be executed. Instruction execu-
tion can be accomplished in four stages: instruction decoding, fetching of operands, execution, and storing
of results. Since these activities can be functionally independent, a new instruction could be initiated as
soon as the current instruction exits the first phase. Thus four instructions can be active in their execution
cycle, each passing through a different phase. This technique known as pipelining was realized in early
computers and provided limited parallelism; asymptotically, four instructions could be executed in the
same time it would have taken one instruction to execute without pipelining. The idea of pipelining was
not used only in the context of the instruction execution cycle, but also in a number of different activities
during program execution.

A straightforward (and oversimplified) extension to the single program counter computer is to
extract several independent instruction streams from a single program, and process each of them
separately on a different conventional computer. This is the main idea upon which most modern parallel
computers are based. A number of stand-alone processing elements are interconnected together (for "occa-
sional" communication) but each processing element remains (in its control structure) a conventional com-
puter. A radically different model of computing machine is the dataflotw model. The notion of a program
counter does not exist in the datallow model; instead, an instruction is executed as soon as its operands are
available (ArNiS7]. Although the dataflow principle is particularly attractive, its realization is less attrac-
tive. On a finite sise dataflow machine we still have to face problems which are present in the control flow
model (GPKK82]. Since more instructions can be ready to fire than execution units available, one needs to

decide on some order of execution. This order will have a profound effect on when other instructions
become ready to execute. One also needs to decide on which unit a particular instruction should execute.
These are only some of the problems which make the realization of a dataflow system more complex and
costly than an equally powerful control flow system.
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A number of dataflow computers have been built so far with the most recent one being the Sigma-i
of ETL [HiSN84], [TYUYSS]. Many of these borrowed principles from the conventional Yon Neumann
atbhitecture but none became a competitive and cost-effective product. The idea of datalow can be
applied more successfully at different levels of program execution if combined with the control flow model.
For the rest of this presentation we focus on the more traditional control flow model upon which is based
the great majority of existing parallel machines.

There are three basic approaches to parallel processing. In the first scenario, parallelism is exploited
by executing many instances of the same instruction(s) on different sets of data. For example, for the mul-
tiplication of two vectors of size n we can execute concurrently n multiplication instructions, each operat-
ing on a different pair of vector elements. Thus in principle one would multiply two vectors in the same
amount of time required to multiply two scalars. This model of parallel computation is often called
Single-Instruction-Multiple-Dat or SIMD and architectures that support this model are termed SIMD
architectures. The pipeline model is clearly SIMD. From the control structure point of view, SIMD
machines have a single control unit which is responsible for instruction issuing and execution. Common
realizations of SIMD computers are vector, pipelined, and array machines. Such computer systems include
the STARAN, the Illiac WV, the ICL-DAP, the Goodyear MPP, the Borroughs BSP, the CDC Cyber 205,
the Cray-1, the Fujitsu VP-100/200, Hitachi S-810, NEC SX-2, Convex-I, and the Connection machine,
just to mention a few.

The second class of parallel machines are those that can process independent instruction streams
(each operating on its own data set) simultaneously and are therefore termed Multiple-Instruction-
Multiple-Data or MIMD systems. MIMD systems are usually composed of a number of independent
stand-alone processing elements. It is very rear however to extract multiple instruction streams which are
completely independent from real applications. Some control and data information exchange between
different streams is usually necessary. To realize this communication, processing elements in a MDMD sys-
tem need to be able to communicate. For applications where this information exchange is very infrequent,
the best processor interconnection scheme is probably a point-to-point connection. Under this scheme each
processor operates ordinarily out of its private memory. Processors which need to communicate assemble
packets of information called messages and they forward them to the requesting processor. This mode of
communication is known as message-passing and computer systems supporting message-passing are usu-
ally designed as distributed memory machines. For applications where this information exchange between
different processor is very frequent, a better way of communication is through a shared memory where
different processors can read and write data to a common memory location. Thus communication is
achieved through sharing of memory; a processor writes into a particular memory location and another
processor reads from the same location. Parallel machines based on this architecture are known as shared
memory multiprocessors or parallel computers. Shared memory is the predominant architecture in modern
parallel computers and is the underlying architecture model for most of the discussion that follows. Table
1 gives a summary (by no means exhaustive) of shared and distributed memory parallel computers
[GeAGO8), Hwan87]. Although some of the software aspects discussed in this paper are particularly suited
for shared memory multiprocessors, most of the ideas are applicable to both machine architectures.

4. Parallel Programming Issues

In this section and for the remaining of this paper we will concentrate on the programming aspects of
parallel computers ranging from supercomputers to minisupercomputers. As mentioned earlier, parallel
computers have evolved impressively in the last few years from the architecture and the hardware point of
view. Progress on the software side can be best characterised as moderate.

There are many reasons for the slow spread of parallel programming. Parallel programming is still
an art at its infancy, and as such, it lacks standards and software tools for parallel program development.
Most programmers are accustom to traditional serial programming. They have in their disposal a plethora
of programming languages, editors, compilers, libraries, debuggers and nuinerous other tools that make
programming in any preferred style an easy task. More importantly, many of these tools and environments
are standards which make codes portable between a large variety of sequential computers. When it comes
to parallel programming, none of the above holds true.
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Table 2. PARALLEL PROGRAMMING ISSUES

SPECIFICATION EXPLOITATION SUPPORT
OF PARALLELISM OF PARALLELISM ENVIRONMENTS

& TOOLS

* Language constructs for o Load balancing and low * Tools for debugging
expressing and packaging run-time overhead simultaneously, and tracing nondeterminancy.
data/functional parallelism
at all granularity levels. * Fast synchronisation/communicat. 9 Program profiling and

static performance analysis.
e Constructs for synchronization * Dynamic selection of granularity
and communication, of parallel tasks within * Graphical interactive

well-defined bounds, user interfaces.
* Means for expressing arbitrary e Low overhead process
nesting, repetitive structures creation and management. e Optimization and
and networks, performance data bases.

e Minimal OS involvement.
a Task/process abstraction * Numerical stability
from architecture details. 9 ntra/intetprocedural dependence analyzers.

analysis and powerful
e Means for avoiding and/or parallelising compilers. 9 Expert systems.
resolving nondeterminancy.

* Distributed * Adaptive operating
data structures, systems.

* Hardware support
for synchronisation, context
switching, proc. allocation.
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In an attempt to identify, examine, and propose alternative solutions to the crucial issues of parallel
programming, we start by dividing the aspects of parallel programming into three well-defined phases.
The first phase is that of Parallelism Specification, and includes issues involved in, and means for express-
ing parallelism in algorithms and programs. The second phase groups together issues involved in the
Exploit tion of Parallelism, with performance being the major underlying factor. Finally, the third phase
involves Support Environments and Tools which provide the means for achieving the goals targeted by the
first two phasm, in a "user-friendly" and globally efficient manner. Table 2 summarizes the goals and
issues involved in each case. In the rest of this section we address each of the three phases separately and
for each, we examine the underlying goals and the major reallsation and performance issues.

SPECIFICATION OF PARALLELISM: The first phase in the development of a "parallel" program
involves the selection or design of a suitable parallel algorithm for a particular application and parallel
architecture. The problem of parallelism specification starts at this point. An ideal parallel language
would provide syntactic constructs which make parallelism specification possible and easy at all granular-
ity levels. Put in other words, the language should provide the means for expressing maximal parallelism.
By maximal, we mean explicit parallel coding of all parallel operations in a given algorithm.

There are two reasons for this: the complexity of parallelism qualification, and portability. Having the
programmer decide whether parallelism at the operation level is more appropriate than at the loop or sub-
routine level, is not desirable due to the enormous potential complexity of this task (assuming that we
refer to a case where parallelism is abundant at all levels). On the other hand, qualifying parallelism dur-
ing the writing of a program inevitably implies tuning the program for a particular machine. Thus porta-
bility (with respect to performance) between different parallel architectures (e.g., a VLIW and a parallel
scalar architecture) is difficult to achieve.

A parallel language which supports manual programming for maximal parallelism alleviates both of
these problems and shifts the responsibility of parallelism qualification to the compiler. There is little
doubt that this can be best done by an optimizing compiler. In fact, maximally parallel programs would
make dependence analysis a much easier task for parallelising compilers. We return to this issue later in
this section as well as in the second part of the paper.

Besides syntactic structures for coding parallel constructs, parallel languages must provide means for
packaging basic structures into hierarchical parallel structures, for synchronizing accesses to shared data or
means for communicating data between different parallel tasks. Memory hierarchies in parallel machines
give rise to the need for language attributes for classifying data as private, task-shared, or global, and for
dynamic memory allocation of temporary structures.

Parallel languages cannot "mature" before the parallel programming community understands deeper
the fundamental principles of parallel processing and builts more experience in programming parallel
machines. The present lack of ilexible parallel languages can be partly overcome by interactive tools,
which compensate for the lack of expressiveness of parallel languages through program annotations, optim-
izing compilers, debuggers, performance and program profilers, etc. As these integrated interactive
environments become more powerful we shift to fully automated parallelism specification methods; even
the parallelism specification task is taken away from the programmer.

As indicated in Table 2, parallelisr. specification is only one of the many and complex aspects of

parallel programming. This complexity leaves little doubt about the necessity of interactive parallel pro-
gramming environments, which encompass all of the above mentioned tools xnd more. The central tool in
such an environment would necessarily be a parallelising compiler. Such a compiler could automatically
parallelise programs written in a serial language, as well as veri:,, enhance, and qualify the parallelism of
already parallel programs. One would then be attempted to ask: why then the need for parallel languages?
This L a question without many obvious answers which has drawn considerable debate. Given the present

limitations of parallelising compilers, one could argue that manutal parallel programming wouh' pruduce

better quality parallel code than such a compiler. An important issue for parallel languages 's that of
parallel algorithm design. Manual parallel programming will force programmers to "think in pirallel" and
will expedite research on parallel algorithm design.
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In summary, parallelism specification can be done manually by means of a parallel programming
language, automatically through a restructuring (paralleising) compiler, or through a combination of the
above. Section 5 discusses parallelism specification from the programming languages perspective. Having
parallelism specified externally (at the source level) or internally (at the intermediate representation level
through a compiler), the next step is the exploitation or mapping of parallelism onto a parallel computer.

EXPLOITATION OF PARALLELISM: The main aspects of parallelism exploitation include
qualification of parallelism, packaging or partitioning, and scheduling or resource (processor/memory) allo-
cation. These are only the "abstract" aspects of the parallelism exploitation phase. When parallelism is to
be fully exploited (i.e., minimize run-time overheads and balance loads across proce-sors), thea one needs
to address compiler, operating system, as well as hardware issues as discussed below. A partial set of prac-
tical approaches to the parallelism exploitation problem includes [Beck89), [Bokh88, [CGNMW88], [Coff76],
[Fox87], [Gokh87], [Gupt89], [Jaya88], [KaNa84], [Mann84l, [PoKu87].

We assume that parallelism specification is done by means of a programming language which sup-
ports maximal expression of parallelism, or by means of automatic program restructuring. Below we
attempt to justify why parallelism exploitation can be best done through the compiler and/or the run-time
system (although there are hardly any voices against this approach).

Qualification of paralleiism (Compiler). Consider a maximally parallel program which in to be compiled for
a specific parallel machine. In general, parallelism in such a program can be present at several different lev-
els of granularity. For example, we may have parallel operations within single statem ts and vector state-
ments, several such statements composing independent basic blocks, independent bash .locks nested inside
parallel loops, independent parallel and/or serial loops, independent subroutine calls, and other higher
level objects which may potentially execute in parallel.

Likewise, when it comes to real parallel computers, we face three (not necessarily orthogonal) ques-
tions:

1) Since parallel machines have a limited number of computational elements, and
assuming we have "parallelism explosion" in a given program, one needs to decide
which parallel constructs will eventually execute in parallel, and which will be
ignored (serialized).

2) Since few machines support parallelism in the hardware for all above cases, some
parallel constructs need to be serialized or restructured to other constructs sup-
ported by a specific machine (put in other words, parallelism may need to be re-
packaged). As an example consider a loop which has been coded as a parallel/vector
loop in a source language, and is to be executed on a vector computer supporting
multidimensional vector statements.

3) Overhead: Exploiting parallelism in the hardware does not come for free. The
familiar pipeline set-up and/or start-up time is overhead paid for vector instruc-
tions. Compensation code is the overhead paid for supporting VLIW instructions in
a viable manner [Nico84]. Process creation time, queue access and scheduling, and
synchronisation-communication time are overheads associated with hIMD parallel-
ism [Poly88]. Due to these overheads parallel execution of certain constructs may
result in execution times longer than the corresponding serial ones.

The parallelism qualification phase is responsible for optimizing the code with respect to each of these
scenarios.

Packaging or partitioning (Compiler): Partitioning refers to the process of merging or splitting well-defined
units of computation into larger or smaller ones respectively. In order to maintain consistency in our terms
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we define a process to be a unit of computation which is scheduled as a whole and is executed under the
control of a single program counter (PC). Hence a process may be serial code, or SIMI) code (vector, VLIW
instructions etc.). A task is composed of one or more processes but it is treated as a unit by the compiler.
In simple terms, partitioning decides whether sets of tasks may potentially execute in parallel. Merging
dependent tasks is appropriate if their parallel execution demands excessive synchronisation or communi-
cation between those tasks during execution. Splitting a large task into smaller ones is a way of reducing
the granularity and hence increase the exploitable parallelism. Partitioning is discussed in further detail in
Section 7.1.

Scheduling (Compiler/Run-time system/OS): Scheduling of the independent processes or tasks of a pro-
gram on different processors is an activity which may affect execution performance dramatically. Depend-
ing on whether scheduling is performed statically (at compile/load-time) or dynamically (at run-time) it
may or may not be separated from the partitioning phase. Typically, there are two level of scheduling in a
multiprocessor system. Scheduling at the job level where processor resources ed to be allocated fairly
among several users to accomplish multiprogramming, and scheduling withing a job in order to distribute
independent tasks to different processors to accomplish multiprocessing [Poly891. Scheduling is the subject
of Section 7.3.

Hardware support: The overhead involved in parallel program execution can be reduced through several
software and hardware approaches. Hardware support for synchronization, context switching, queueing,
interprocessor communication, and processor allocation is necessary for very high performance parallel
computers. As parallel processing overhead keeps decreasing, parallelism exploitation at lower granularity
levels becomes effective. Most of the modern parallel computers incorporate specialized hardware for sup-
porting these operations. For instance, Alliant FX/8 uses a control bus for realizing fast microtasking; a
set of synchronisation registers in the Cray X-MP and Y-MP is used in a similar fashion; a large register
file in the Convex C-240 is used for fast context switching and micro/macrotasking [CGMW88].
Hardware suppoit for such special operations as barrier synchronisation may improve the performance of
parallel tasks significantly [Alli85], [Beck80J, [Gupt89l.

SUPPORT ENVIRONMENTS & TOOLSs The issues involved in the parallelism specification and
exploitation phases are many and often overwhelmingly complex for any programmer. On the other end it
is often impossible or difficult for the compiler to gather all the information necessary to carry out these
optimisations. Thus, an interaction between the user and the compiler is mandatory for achieving the best
result in general.

User intervention may happen at several different leveIG. A parallel programming environment must
provide the appropriate user interface to allow for easy and effective interaction with the user (Figure I).
Such an interface should provide the tools for representing a program at many different levels, starting
from the source level to the dependence graph, and up to the task or subroutine call giaph level. User feed-
back can be in the form of predicates which specify the relationship between atomic structures, or value-
ranges for variables, in the form of task qualifiers etc.

In addition, a programming environment must support parallel program debugging and tuning. Non-
determinism and other race conditions in a multiprocessor make parallel program debugging a particularly
critical issue. Post-mordem analysis and performance profilers are also needed to allow further tuning for
enhancing performance. Numerical stability analysers can be useful in determining the effect of program
restructuring on the stability of computations [BrGag9J. Static timing analysis of a parallel program is
necessary to guide many phases of a parallelising compiler [Cytr84l, fPoly88, [SBDN871. For example, the
parallelism qualification phase is based on compile-time estimates of code tnd/or data structure size, exe-
cution time estimates, etc.

Programming environments will allow a user to display segments of a program in different represen-
tations ranging from the code itself to dependence and control flow graphs to task graphs. In addition, a
profiler can give information as to where a program spends most of its time, or detailed timing profile for
an entire application. A library of different synchronisation schemes provides synchronisation alternatives
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for different circumstances. The most appropriate type of synchronisation for each circumstance can then
be chosen by the user of automatically by the compiler. A number of other libraries, data bases, and other
program manipulation tools complete the picture of a parallel programming environment which lies on top
of a powerful parallelising compiler. It will not be long before such programming environments become
common.

Figure 1 shows the different phases of L complete programming environment. The same diagram can
be viewed as a parallel program development and execution cycle. Each of the boxes in the figure
correspond to a number of tools Lnat peform a specific function. For example, the "program restructuring"
box includes tools such as a parallelising compiler, static performance analyser, program data-base for
interprocedural analysis, code generation, and possibly profile history, graphical interfaces for displaying
program representations, etc. All these tools must be integrated and interfaced in a convenient manner to
provide for maximum user productivity and program performance, which is the end-goal. An expert sys-
tem may be built on top of such an environment to provide user support as well as to guide several pro-
gram optimisations such as multi-version code generation [WaGa891, WolfU9]. It is worth noting that at
present, there exists no programming environment that supports automation of even a small subset of the
functions discussed above.

5. Parallel Languages and Systems

Few programming languages provide adequat- support for parallel programming. Parallel language
design is by and large at an experimental stage. One of the earliest and most influential formalisms
toward a parallel programming language was the CSP proposed by Hoare [Hoar78l. CSP is the foundation
upon which Occam was built for transputer based networks, and it influenced thc design of other
languages and systems as well (e.g., Linda, [ShCO86]).

At present, manual parallel programming is accomplished in three different ways: through the use of
'parallel" languages, through program annotations, or through a combination of language constructs, pro-
gram annotations, and tools that work between the compiler and the run-time or the operating system,
and provide virtual processors that can be user controlled. Early multiprocessors provided parallel pro-
gramming support via annotations in the form of comment cards or function calls. These annotations tap
to the run-time library and eventually to the operating system to provide the means for creating multiple
tasks, allocating memory for them, and scheduling them on the computing elements of a multiprocessor.
The first version of the Cray multitasking library worked in a similar way [Cray85].

Following similar approaches most multiprocessor vendors provided extended run-time systems with
parallel processing support, typically referred to as multi/macro/micro-tasking libraries. Run-time sys-
tems, however, do not provide a portable environment for parallel programming - they are tailored to a
particular machine. Portability was the major force behind the development of the Schedule package at
Argonne, which allows the user to explicitly specify data dependences, partitioning, and allocation of tasks
to virtual processors supported by that environment [DoSo87].

A combination of language extensions and run-time systems is being currently used by most super
and superminicomputer vendors, and many more have been developed at universities and other research
labs. An example of such a system is the Linda environment [AhCO86]. At different times Linda has been
suggested as a language, as a run-time support system, and even as an environment for parallel program-
ming. Based on CSF principles, Linda provides convenient (but not necessarily efficient) constructs for
sharing and communicating data between different processors. Like Linda the great majority of these sys-
tems provide a convenient and portable environment for parallel program development, but they are,
nevertheless, quite restrictive when it comes to types of parallel constructs supported, scheduling, syn-
chronisation, and above all efficiency and performance. Furthermore, none of these systems provides
automatic solution to the crucial issues of parallel programming mentioned in the previous section. They
do however, represent the state-of-the-art in parallel programming support environments

In the rest of this section, we shall review the most interesting extensions to widely used languages
for supporting parallelism. Language extensions have been proposed for a variety of existing serial
languages, both functional and imperative. User enthusiasm has varied and as it would have been expected
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it depends on the popularity of the base serial language in the first place. Table 3 gives a summary of
existing parallel Lisp implementations for a variety of parallel architectures, including dataflow machines

(PaHKSSI. Perhaps the most well-known Lisp dialect is Multilisp (based on Scheme) which supports
parallelism through the future construct [Halass].

At the language level, futures provide the means for decoupling references to a variable from the
evaluation of that variable or structure. A future associated with a variable can be referenced before that
variable has been evaluated; in that case the execution of the object making the reference is blocked until
the evaluation is complete. Thus futures provide a vehicle for synchronising accesses to atomic and com-
pound structures. Although futures provide a flexible and powerful abstraction, when it comes to perfor-
mance, +he real issue lies in the implementation and efficiency of this abstraction.

Similar language extensions have been propoeed for Prolog, with Concurrent Prolog being the most

well-known parallel dialect [ShapeS]. Table 4 gives a summary of parallel prolog systems currently in use
[PaHK8S]. In the next few sections we look in more detail at parallel Fortran languages, Fortran being by
and large the predominant language for programming high performance multiprocessor systems. Occam is
reviewed next an the representative of languages which were developed originally an parallel programming
languages.

5.1. Parallel Fortran Dialects

It is not random that most of the "parallel" languages in use today are extensions and enhancements
to Fortran. Almost all supercomputer vendors supply an enhanced (vector and/or parallel) Fortran version
with their machines. In this section we overview the most important features of various Fortran dialects.

Fortran 8X# The only notable Fortran 8X features for "parallel" programming are the array operations
and statements [Lawr75], [Paul82]. Nevertheless, Fortran 8X is evolving in the right direction as a more
flexible and general purpose language by including facilities for complex user-defined data types, recursion,
more control constructs etc [ANSI86]. The new standard is a superset of Fortran 77 even though several
old and redundant features have become candidates for elimination in the next standard. In addition to
five types of intrinsic literal constants and scalar variables, 8X provides facilities for user-defined data
types. General type declarations have the following format:

(access] TYPE type-name [ (type-param-name-lat)
type-specifteation

END TYPE [type-name]

where access can be PUBLIC or PRIVATE and type-specification is a sequence of intrinsic and/or other
type declarations. An example of a type declaration is shown below.

TYPE date

CHARACTER(LEN=7) day
CHARACTER (LEN=10) month

INTEGER year
END TYPE date

The declaration and use of complex data objects in Fortran 8X resembles that of records in Pascal. The
language provides for array declarations of fixed and variable sises. For instance the statement

REAL., ARRAY(-2:5, 10) :: A

declares A to be a two dimensional array (rank two) of reals with eight rows and 10 columns. Vector con-
stant% can be specified as lists of elements enclosed in square brackets. The sequence (5, 5, 5. 7 8, 8] is
a vector constant of size seven and rank one.

In terms of parallel constructs there is not much more than array expressions and assignment state-

ments. Array expressions and assignments are allowed between confcrmable arrays of compatible types. If
A. B. C, and V are declared as follows,
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REAL, ARRAY(1O,1O) :: AB.C
REAL, ARRAY(S) :: V

then C = A+B defines the elements of C to be the sum of the corresponding elements of A and B. The
correspondence is by position in the extend (dimension). Thus, the same array assignment statement can
be rewritten as C (1:10) = A (1:10) +B (1:10). Similarly, A = A+5 increments all elements of A by
five. The statement A (1. 1:5) = V results in overwriting the first five elements of the first row of A by
the corresponding elements of vector V.

Finally, modules in 8X along with the PUBLIC and PRIVATE attributes on type declarations allow

for packaging and restricted use of data objects at different scopes of a program. Although Fortran 8X has
not been frozen at present, it is fair to say that the language is evolving as a more general purpose
language by providing the programmer with facilities for data abstraction, more efficient memory alloca-
tion, structured programming and more powerful control constructs. Nevertheless, it provides minimal

support for concurrent programming.

CEDAR and Cray Fortran, The Cedar Fortran was designed based on the 8X, Alliant, and Cray For-
tran extensions, and includes a number of additional extensions for multiprocessing support on the Cedar

machine [GPHLSg], [KDLS86]. Given the clustered organization of the Cedar multiprocessor, and the

desire to provide more control to the user, Cedar Fortran supports two types of concurrent loops: CDOALL
for intra-cluster concurrency, and SDOALL for inter-cluster concurrency. Consider the following doubly

nested parallel loop.

GLOBAL A(10,20), I

SDOALL I = . 10
INTEGER J

LOOP
CDOALL J = 1, 20

A(IJ) = I+J

ENDCDOALL
ENDSDOALL

Each iteration of the outer loop is assigned to a different processor cluster of the machine. Within each
iteration of the SDOALL we have another concurrent loop which is executed within the cluster owning its
current I value. Since A is written by different clusters, it is allocated in global memory. In addition to
GLOBAL Cedar Fortran provides the CLUSTER memory attribute, for structures allocatable to cluster
memory. In the above example, integer J is cluster-private. Notice that since vector instructions are sup-
ported by the Cedar (Alliant) processors, the machine supports up to three levels of parallelism.

Cedar locks and events are identical to those of Cray Fortran. The same is true for macrotasking
primitives. A new task can be spawn by executing the following statement: int =
ctskstart (num-proc. sub [, arg] ... ), where sub is the subroutine name containing the task
with an optional list of arguments, and num-proc is the number of processors requested for that task.
logical = ctukdonr (int) returns true/false depending on whether task int has completed or not.
A join or barrier synchronization can be accomplished through ca 1 ctskwait (int) which suspends
execution of the calling routine until task int completes execution.

Both the Cray and Cedar dialects include extensive support for macro and microtasking, synchroni-
zation, and dynamic memory allocation. Most of the Cedar Fortran facilities resemble closely those of
Cray's. Both languages support multitasking through the run- time system as opposed to language exten-
sions. Since the multitasking mechanisms are essentially the same as those of the more recent IBM For-
tran, and since the latter provides true language extensions for tasking, we have chosen not to discuss task-
ing in the Cedar and Cray Fortran, in favor of more detailed review of the IBM Fortran.

IBM Fortrant Recently, IBM released the first version of its Parallel Fortran for the MVS/XA and the
VM/XA SP operating systems. The IBM Parallel Fortran is probably the rost "loaded" Fortran dialect
for multiprocessing so far (IBM881. It provides both direct language extt. ions for parallel processing as
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well as a set of useful library routines and compiler directives. The combination of powerful language
extensions along with (limited) automatic parallelisation in the compiler gives the IBM Fortran a distinct
advantage over many other Fortran dialects. For parallel task execution the IBM run-time library follows
closely Cray's macro and microtasking, but more facilities for tasking are provided at the language level in
this case.

In the IBM Fortran, a task is a complete environment with its own local space and code. Tasks can
also share space with other tasks. Tasks can be explicitly created and manipulated by the programmer.
Tasking in the IBM Fortran is implemented in two stages. In the first stage, tasks are explicitly created
but they are not executable. We often refer to originated (but not allocated) tasks as virtual or simply
tasks. In the next phase these virtual tasks are allocated work (parts of user code), again explicitly
through facilities provided by the language. We call this the binding phase and we refer to work allocated
to virtual tasks as user or real tasks or simply tasks whenever the context is clear.

In addition to explicit tasking, implicit tasks created automatically by the run-time library are used
to execute explicitly coded parallel loops. In the rest of this section we concentrate on language rather
than library and compiler features. As mentioned above, the user creates a number of tasks at the begin-
ning of the program and performs the binding of real to virtual tasks. In addition to binding, synchroniza-
tion, load balancing, and in general the entire tasking process is under the direct control of the program-
mer. But let us review the most interesting features of the language.

First, we consider parallel loops. Vector processing was supported by the previous IBM Fortran ver-
sion for the 3090 series, and the syntax of vector statements is identical to that of Fortran 8X. The new
Fortran extensions include a parallel loop construct whose syntax is as follows:

PARALLEL LOOP label [.] indez=l, u [, str]
[PRIVATE (var [,ar] ...
(DOFIRST [LOCK]

dofirst-block]
[DOEVERY

doevery-block]
[DOFINAL [LOCK]

doftnae-bloek]
label CONTINUE

The PARALLEL LOOP header initiates a loop which is to be executed by many implicit tasks. Depending
on the loop type and sise the implicit tasks may be as many as the number of iterations of the loop (thus
different iterations may be executing simultaneously and independently), or many iterations may be
assigned to a single implicit task. Variables which are private with respect to each loop iteration may be
declared as such within the loop, following the PRIVATE clause.

The body of a parallel loop consists of a prologue which starts after the DOEIRST clause (dofirst-
block), the main loop body which starts after the DOEVERY statement (doevery-block), and an epilogue
(doflnal-b/oek) which starts after the DOPINAL statement. The DOFIRST and DOFINAL blocks are ex,,
cuted once by each Implicit task participating in the execution of the loop. The DOEVERY block contains
the code which is ' be executed by each iteration of the loop. The DOFIRST and DOEINAL blocks can
be executed excl ely (by the implicit tasks assigned to the loop) if the LOCK attribute is specified. Each
task obtains the lock before entering the corresponding block, and releases the lock upon exit from that
block. An example of a parallel loop performing a reduction follows.

sum = 0
PARALLEL LOOP 10 1 = 1,N

PRIVATE (s)
DOEIRST

s = 0
DOEVERY

DO 20 j =I,M

s = s+a(i,J)
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20 CONTINUE
DOFINAL LOCK

sum = sum+s
10 CONTINUE

Another important feature of the IBM Fortran is the parallel CASE statement which can be used in much
the same way as cobegin-coend to achieve parallel execution of independent computations. The syntax of
the PARALLEL CASES statement is shown below.

PARALLEL CASES
[PRIVATE (var [, var] ... )]
{CASE [m (, WAITING FOR {CASE n I CASES(n1 [,nRJ]...)}]]

case-block}. ..
END CASES

All different ease-blocks are evaluated simultaneously by different implicit tasks. If the WAITING FOR
attribute is specified for a CASE, that case-block will not execute before all cases referenced in that
WAITING FOR have completed execution. Therefore, one may use the cases statement to schedule acyclic
task graphs for parallel execution. Consider for example the following task graph

Ti

T2 T3

T4

TS

This graph may be coded in Fortran using the parallel case statement as follows:

PARALLEL CASES
CASE 1

Ti"

CASE 2, WAITING FOR CASE 1
T2"

CASE 3, WAITING FOR CASE 1
T3"

CASE 4, WAITING FOR CASES (2,3)
T4:

CASE 5, WAITING FOR CASES (3,4)
TS:

END CASES

Explicit task definition and manipulation is supported by direct language extensions. Any number of tasks
may be started anywhere in the program by using the ORIGINATE statement,

ORIGINATE ANY TASK takid
where takid is the identifier of the task initiated by the statement. A task created by the ORIGINATE
statement is owned by the task from which the statement was executed. The following loop,
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DO 10 1 = 1.10
ORIGINATE ANY TASK takid(i)

10 CONTINUE

initiates 10 tasks which can be referenced inside the same scope by their identifier tskid(*). Upon initiation,
tasks are not assigned specific work unless an explicit SCHEDULE statement is executed. The SCHEDULE
statement binds a real task (user-defined) to an already originated task.

There are two versions of the SCHEDULE command. The first is the SCHEDULE TASK command
with the following syntax:

SCHEDULE TASK tekid,
[TAGGING (tagl [, tag] ... )
[SHARING (shreom [,8hrcoin] .. .
[COPYING(cpcom [,cpcom] . . .) ,]
[COPYINGI (cpicom [cpicom] ... ) ,]
[COPYINGO (cpocom e epocom] . . .) ,]

CALLING subz(([nrgl [,argf] ... )]

The second is the SCHEDULE ANY TASK whose syntax (besides the clause ANY) is identical to that of the
SCHEDULE TASK. Let us use the abbreviations ST and SAT for the two statements. In ST, tskid
specifies the identifier of a currently unused task which will execute the scheduled subroutine (or user task).
In contrast, SAT returns this identifier in takid.

The argument(s) in the TAGGING attribute is a scalar value which is used to tag the piece of work
which is being scheduled. These tags can be used to identify tasks and determine their status (i.e, com-
pleted, executing). The arguments in the SHARING clause are the names of COMMON blocks which are
shared with the scheduled task. The COPYING part of the command takes as argument the name of a
COMMON block in the environment of the scheduling task. The contents of that block are copied into a
COMMON block of the same name but which is created in the scheduled task's environment. Upon comple-
tion of the scheduled task, the contents of the latter block are copied back into the former. COPYINGI is
as above but no copying back is performed upon completion of the task. The argument(s) in COPY INGO
is the name of a common block in the environment of the scheduled task. The contents of this block are
copied back to a COMMON block of the same name in the environment of the scheduling task aftr the com-
pletion of the scheduled task.

Finally, the CALLING part of the statement specifies the name of the subroutine to be scheduled for
execution (subz). Hence, unlike implicit tasks in the CASE statement, tasks which are explicitly scheduled
with the SCHEDULE command must be organised as subroutines. Another siteresting feature of the
SCHEDULE command is that it allows the programmer to perform manual binding of program tasks to v'r-
tual tasks (through the ST version of the command), but it also allows more dynamic binding through the
SAT version. In both cases, however, virtual tasks must be explicitly originated before the binding.

Synchronisation of SCHEDULEd tasks can be achieved through the use of the WAIT FOR statement.
Every SCHEDULE statement in a program must have a corresponding WAIT FOR statement. The latter
forces the issuing task to wait until the corresponding scheduled task completes. There are three versions
of the WAIT FOR statement. The first,

WAIT FOR TASK tskid C.TAGGIGN (tagl [, tag].) ]

blocks execution of the issuing task until the task with identifier takid completes. The second version of the
command, WAIT FOR ANY TASK, with identical syntax as the first, blocks execution until any task
issued by the scheduling task completes execution. Hence, if only four tasks with identifiers TSKID (1 4)
are SCHEDULEd from a given subprogram, then the sequence

WAIT FOR TASK TSKID(1)

WAIT FOR TASK TSKID(2)
WAIT FOR TASK TSKID(3)
WAIT FOR TASK TSKID(4)
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will block further execution until all four tasks complete and so does the sequence

WAIT FOR ANY TASK tekid
WAIT FOR ANY TASK tskid
WAIT FOR ANY TASK tskid
WAIT FOR ANY TASK iskid

The third version is the WAIT FOR ALL TASKS statement. If we substitute the SCHEDULE clause in the
above statement with the DISPATCH clause we get another statement with identical syntax and similar
semantics. The only difference is that a task which has been assinged work through a DISPATCH can be
reassigned other work by another DISPATCH without using a corresponding WAIT FOR statement. How-
ever, that task cannot be reassinged work through a SCHEDULE statement unless a WAIT FOR ALL
TASKS has been issued. The latter is the only means of synchronising dispatched work. Continuing the
previous example, a single WAIT FOR ALL TASKS statement would also be equivalent to the two WAIT
FOR sequences above.

In addition to these language extensions, the IBM Parallel Fortran provides also a rich repertoire or
intrinsics and library routines for parallel locks and events as well as a set of compiler directives which
facilitate manual and semi-automatic parallel programming. With the exception of parallel loop handling,
the IBM1 Fortran provides the most complete extensions for taskinr, compared to other parallel Fortran
dialects. A summary of other vector and parallel Fortran dialects appears on Table 5 [GPHL88).

Oceamns As a representative of a language originally designed as parallel we selected Occam, a language
which has been specifically designed (based on CSP) for distributed memory computers. The fact that
Occam is one of the first attempts to design a genuine message-based language makes it quite interesting.
Despite the almost enthusiastic acceptance of Occam by the transputer community, the language suffers
(from) many drawbacks. Before we comment on the :;dvantages and the peculiarities of Occam let us
examine the basic facilities.

Unlike the languages that have been examined so far, the notion of global or shared variables and
structures in Occam does not exist. Rather, data exchange between different parts of a program occurs
through explicitly defined channels and is completely asynchronous. Program modules are organized in
pr.ewesses which communicate through user-defined channels. Communication is achieved with messages
which are assembled by a transmitting process and are forwarded through channels to a receiving process.
Thus, variables are always local to each process.

Occam programs can be written using three primitive processes and a number of constructs which
provide the means for grouping primitives into more complex program units. The three primitives are
assignment, input, and output statements. An assignment statement has the general form v := expr
and assigns the value of expression expr to vari be v. I/O is always accomplished in Occam through
channels. Channels can be declared in a program just like any other variable using the attribute CHAN. As
discussed later (virtual or program) channels can be mapped directly to hardwired channels of a particular
transputer configuration. If chani and chan2 are variables of type CHAN, then the primitive process
chanl I expr outputs the value of expression expr to channel chan. An input process of the form
chan2 ? v inputs the value of variable v from channel chan2.

Complex nested processes can be forased by using a number of constructs provided by the language.
Any well defined program unit (starting from the primitives) is a process with is own instruction stream
and data. It is convenient to represent Occam programs using directed graphs with nodes representing
processes and arcs corresponding to program defined channels. Since exchange of data and other corni iuni-
cation can occur only through channels, two or more Occam processes may communicate only if they are
simultaneously active (executing). If a process tries to communicate with another process whose execution
has not started or which is blocked, then the first process also becomes blocked. Thus, it is not hard to
specify a set of processes which can lead to a deadlock. Another peculiar feature of Occam is that primitive
processes must be written in a single line. For example, breaking a lengthy assignment process into two
lines my produce incorrect results. Some ad hoc rules can be used to avoid such cases but these rules are
not enforced by most Occam implementations.
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In Occam indentation defines the scope of objects and constructs. Variables are local to the process
immediately following their declaration and at the same indentation level. The scope of constructs includes
all processes which are indented two spaces to the right of the construct specifier. Unlike most other
languages, lexical ordering does not relate to flow of control order. Occam provides a number of flow of
control constructs which are discussed below. The construct SEQ can be used to specify sequential execu-
tion order for all processes following at the same indentation level. For example,

SEQ

Q
S
W

amounts to executing process Q before S which is executed before W. The inverse result is obtained by
using the construct PAR in place of SEQ. All processes within the scope of a PAR and at the same inden-
tation level can execute in parallel. Two other control constructs include the IF and ALT processes. An
IF process comprises a number of processes each preceded by a boolean expression. In this case evaluation
of the boolean expressions is performed in lexicographic order; the process following the first boolean
expression to evaluate to true is the one which is executed. The ALT construct can be thought of as an IF
process whose branches are evaluated simultaneously, and the first branch to satisfy the test condition is
the one taken. However, in ALT each component process is preceded by an input process, or by a boolean
expression followed by an input process. The first input process that completes successfully is the one
whose branch is taken. These input processes act like guard inputs. Consider the following process.

CHAN chanl, chan2:
INT v:
ALT

chanl ? v
IF

v>O
V-.=(

TRUE
SKIP

chan2 ? v
v:-O

Variables chan and chan2 are declared to be of type channel and v of type integer (all three are local
to the process following at the same indentation level, i.e., ALT). In the input guards in the above frag-
ment input a valae from chanl or char2 t- variable v. If the value comes from chanl then the pro-
cess following that guard is executed. In that case, if v is positive it becomes 0 otherwise it remains unal-
tered. SKIP is a special empty process. If input is performed through channel chan2 then v becomes
also 0. If neither of the input guards completes then the process is deadlocked. If both guards complete
simultaneously one path is chosen arbitrarily. To avoid this type of nondeterminism a prioritized alterna-
tive process can be specified as PRI ALT. In that case priority is given to the process which is lexically
first.

Occam allows to specify replicated constructs using the above processes. The general syntax of a
replicated process is

_header> inder=base FOR count

process-body

where <header> can be any of the SEQ, PAR, IF. or ALT constructs, process-body is a sequence of
processes for SEQ and PAR, a sequence 'f processes each preceded by a boolean for IF, or a sequence of
processes each preceded by an input guard or by a boolean ane. an input guard for kLT. The effect of a
replicator is to spawn a number of -header> processes indicated by count. Each process can be refer-
enced by its index value. Consider the following example.

[10] [10] INT a, b, c
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INT I
PAR 1 FOR 10

INTJ :

SEQ j=1 FOR 10
INT s, k
S:=

SEQ k=1 FOR 10
s := s + a[i] [k] * b[k] [j]

cc'] [j] := S
The above Occam program performs the multiplication of two matrices, a and b and stores the result in
c. The replicated PAR spawns 10 independent processes, each computing a vector times matrix product.
Thus the replicated PAR construct serves as a parallel loop in this case. Similarly, the two inner replicated
SEQs function as serial loops (even though the middle SEQ could be replaced by a replicated PAR).

This example brings up many "loose ends" of Occam. The semantics of the language is not clear in
many caes and it is probably left up to each implementation to decide the exact semantics of the
language. First, let us consider the replicated PAR. According to the definition parallel Occam processes
can execute simultaneously on different processors, say transputer nodes. On the other hand, processes
executing in parallel can communicate only through channels defined by the programmer. If in the above
example we assume that all three matrices are allocated to the local memory of one processor, then each of
the ten processes should send the locally computed row of c to the appropriate processor through a user-
defined channel. In the example above this does not happen. By using an assignment statement to store
the computed elements of c, we imply that the ten parallel processes created by the replicated PAR are to
execute on the same node, and thus are effectively serialised. On the other hand, a smart compiler could
detect this came and translate the assignment into a distributed assignment statement which completes
from two ends of a common channel. This could be done for example as

channel ? s
channel I ci] [J]

where channel is one of ten user-defined channels. Thus, even the low level details of process formation
and processor allocation is left to the discretion of the user. This puts an unreasonable demand on the
average user and it is in complete disharmony with one of the main goals of parallel programming, i.e., to
obscure low level details that demand high level of expertise from the user. To the best of our knowledge
this problem is not eased by existing Occam compilers; more needs to be done for developing optimizing
Occam compilers and restructurers.

6. Parallellsing Compilers

Automatic program restructuring and optimisation for SIMD parallelism is an extensively researched
subject which was pioneered by Kuck and his colleagues at the University of Illinois, Kennedy and his asso-
ciates at Rice University, and Allen and her colleagues at IBM [ABCC87], [AIKe82], [AIKe87], [Bane88],
[KLW8O0, [KKPL81], [PaWo8G]. Many other researchers at several institutions have made very
significant contributions on the subject as well. Many of these ideas are directly applicable to restructur-
ing for MIMD parallelism although this later subject is far from being well-established. Restructuring for
SiMD parallelism is more commonly referred to as vectorization. Restructuring for MHMD parallelism is
known as parallelization or concurrentization with the former being the term of our choice.

Parallelising compilers transform not only serial programs, but they can further paralelise programs
written in a parallel language. Moreover, such compilers can be used to partially validate the user-
specified parallelism in an already parallel program. This section addresses the most important issues
involved in automatic parallelisation, and discusses viable solutions. Since it is not possible to give a
thorough introduction to this subject in this paper, we have chosen to discuss representative transforma-
tions as examples [ChCi87], [Cytr84], [GiPoSS], [Nico84], [Kuck78], [PaWo8], [Wolfg2j. A more complete
discussion on program transformations can be found in [AIKe87], [PaWo86], [Poly88], [WolfS2].

206



0.1. Computing Data Dependences

Automatic parallelisstion is based on data and control flow information that the compiler gathers by
analysing the program. Obviously, the more accurate the information gathered by the compiler, the more
aggressive the paralielisation. During dependence analysis, the compiler examines the flow of data through
a program to determine execution orderings which need to be obeyed for not violating the original seman-
tics of the program. Before we make a brief introduction to data dependences we need to establish the
necessary notation.

A program is a list of kEN statements. S, denotes the i-th statement in a program (counting in lexi-
cographic order). L denotes a DO loop index, and i, a particular value of I,. N. is the upper bound of a
loop index/j, and all loops are assumed to be normalized, i.e., the values of an index 1, range between I
and N .We have two types of statements, scalar and indexed statements. An indexed statement is one that
appears inside a loop, or whose execution is explicitly or implicitly controlled by an index (e.g., vector
statements). All other statements are scalar. The degree of a program statement is the number of distinct
loops surrounding it, or the number of dimensions of its operands. S(1,2,...,Ik) denotes a statemeit of

degree k, where I is the index of the j-th loop or dimension. An indexed statement S 1k) has H'N,

i-idifferent instances, one for each value of each of J,,(j-1,..,k). Si will be used in place of S.(I ... Ik) when-
ever the set of indices is obvious. We say that statement S, precedes S, in the order of execution, and
denote it by Si < Si, if under the serial control flow S, is executed before S..

Two statements S, and S. are said to be involved in a flow dependence Sj65, if and only if Si pre-
cedes 5j in the serial execution order, and a variable written by Sj is read by S,. An antidependence
between S; and Sj is defined as the flow dependence above, except that in this case, a variable read by St is
written by S,; an antidependence is denoted by S, Mi5. An output dependence is again defined as above
but with S, and Si writing to the same variable, and is denoted by S,60Sj. In all three cases S, is called
the dependence source and S,. is the dependence sink. For each data dependence involving statements
S(il...,i) and Sj]...,jk) of degree k we define the r-th distance 0,, or 0,(6), to be 4,-j,-i,, (i<r<k).
The k-tuple <0,102,...,10,> is called the dependence distance vector. As an example of dependence calcula-
tion, consider the following loop

DO I = 1, N

81: A(I+K) = ...
82: ... = A(I)

ENDO

where K is a nonnegative integer constant. Here 8,<e, and IN(s,) n OUT(s2 ) P0, but we cannot deter-
mine yet whether a flow dependence from s, to 82 exists. Several factors must be considered in this case.
For a dependence to exist we must have two values of the index I, It and 12, such that <I<l 2 N and
1,+K=I2 . To test this we must know the values of K and N. In most programs the value of K is known
at compile-time but this is not always true for loop bounds like N. If K<N then a dependence may exist.
However if K>N no dependence between the two statements can exist. Frequently loop bounds are not
known at compile-time but to be on the safe side they are assumed to be "large". In general, dependences
can be computed by solving a Diophantine equation similar to the above. Algorithms for computing data
dependences are given in [BaneSS], [WoBa87].

The program data dependence graph or DDG, is a directed graph G(V,E) with a set of nodes V
corresponding to statements in a program, and a set of arcs E representing data dependences between
statements. A DO loop denotes an fixed-iterative loop, which is serial. A loop whose iterations can execute
in parallel and in any order is called DOALL. The dependences in certain loops may allow only partially
overlapped execution of successive iterations. These loops are called DOACROSS and are mentioned in only
a few cases in this paper [Cytr84J. Of course, a loop is marked as being DO, DOALL, or DOACROSS after
the necessary dependence analysis for that loop has been carried out.
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6.2. Automatic Program Parallellsatlon

After determining dependences and building the DDG, the compiler starts the process of optimizing
and restructuring the program from a serial into a parallel form. During the optimization phase several
architecture independent optimisations are applied to the source code to make it more efficient, more suit-
able for restructuring, or both. The restructuring phase which actually transforms the program into a vec-
tor and/or parallel form is also organised into architecture independent and architecture dependent sub-
phases.

Loop Vectorlnation and Loop Distributions When compiling for a vector machine, a vectorising com-
piler attempts to generate vector instructions out of innermost loops [KennS0l, [PaWo86], [WolfS2]. To do
this the compiler must check all dependences inside the loop. In the most simple case where dependences do
not exist the compiler can distribute the loop around each statement and create a vector statement for each
case. Vectorising the following loop

DC I =1, N
s,: A(I) = B(I) + C(I)
s8: D(I) = B(I) * K

ENDO

would yield the following vector statements

s: A(I:N) = B(I:N) + C(1:N)
82: D(1:N) = K * B(1:N)

In the original loop one element of A and one element of D were computed at each iteration. In the latter
case however all elements of A are computed before computation of D starts. This is the result of distri-
buting the loop around each statement. In general, loop distribution around two statements s i and 8, (or
around two blocks B and By) is legal if there is no dependence between s; and 8j (B and B1 ), or if there
are dependences in only one direction. By definition, vectorisation is only possible on a statement-by-
statement basis. Therefore in a multistatement loop, loop distribution must be applied before vector code
can be generated. As an example, consider the following serial loop.

81

DO I = 1. N
as: A(I+I) = B(I-1) + C(I)

s8: B(I) = A(I) * K 2

as: C(I) = B(I) - 1

ENDO

83

The data dependence graph is shown on the right. A simple traversal of the dependence graph would
reveal its strongly connected components (SCC). Loop distribution takes place around each SCC. Those
SCCs with single statements (that do not have self-dependences) can be vectorised. The result of vectoris-
irg the above loop would be:

DO I = 1, N
A(I+1) = B(I-1) + C(I)

B(I) = A(I) * K
ENDO
C(1:N) = B(1:N) - 1
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Due to the dependence cycle the loop cannot be distributed around a, and 82.

Loop Interchanges Loop interchange can used to interchange the nest depth of a pair of loops in the
same nest, and can be applied repeatedly to interchange more than two loops in a given nest of loops
[PaWo86], [WolfI2J. As mentioned above, when loops are nested vectorisation is possible only for the
innermost loop. Loop interchange can be used in such cases to bring the vectorisable loop to the innermost
position. For example, the following loop

DO I = 2, N
DO J = 2, M

A(IJ) = A(I, J-3) + 1
ENDO

ENDO

is not vectorisable because the innermost loop (a recurrence) must be executed serially. But the outermost
loop is parallel. By interchanging the two loops and vectorising the innermost we get

DO J = 1, M

A(I:N,J) = A(1:N, J-1) + 1
ENDO

Loop interchange is not always possible. In general a DOALL loop can be interchanged with any loop
nested inside it. The inverse is not always true. Serial loops for example cannot always be interchanged
with loops surrounded by them. Interchange is illegal, for example, in the following loop.

DO I = 2, N
DO J = 1, M

A(I,J) = A(I-1,J+l) + 1
ENDO

ENDO

In general loop interchange is impossible when there are dependences between any two statements of the
loop with "<" and ">" directions [Wolf82]. In vectorisation, interchange should be done so that the loop
with the largest number of iterations is brought to the innermost position. This would create vector state-
ments that will operate on long vector operands. For memory-to-memory systems (e.g., CDC Cyber 205)
long vectors are particularly important. If on the other hand we compile for a scalar multiprocessor, bring-
ing the largest loop (in terms of number of iterations) in the outermost position is more desirable, since
that would allow the parallel loop to use more processors.

Node Splitting and Statement Reordering: Loop vectorisation and parallelisation is impossible when
the statements in the body of the loop are involved in a dependence cycle. Dependence cycles that involve
only flow dependences are hard to break. There are cases however where dependence cycles can be broken
resulting in total or partial parallelisation of the corresponding loops. One case where cycle breaking is
possible is with dependence cycles that involve flow and antidependences. Consider for example the follow-
ing loop whose statements are involved in a dependence cycle with a flow and an antidependence.

DO I = 1, N
&I: A(I) = B(I) + C(I)
#2: D(I) = A(I-1) * A(I+)
ENDO

Due to the dependence cycle this loop cannot be vectorised. Node splitting can be employed here to elim-
inate the cycle by splitting the node (statement) which causes the anti-dependence. This is done by renam-
ing variable A (I + 1) as TEMP (I) and using its new definition in statement 02. After the cycle is broken
loop distribution can be used to distribute the loop around each statement. The loop can now be distri-
buted around a. but not around a, and as, since there are dependences in both directions. Statement reord-
ering can be used here to reorder the statements of the loop (reordering is not always legal). The loop
satisfies now the "one direction dependences" rule, and thus it can be distributed around each statement
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resulting in the three vector statements shown below.

TEMP(1:N) = A(2:N+I)
A(1:N) = B(1:N) + C(I:N)
D(I:N) = A(O:N-1) * TEMP(1:N)

Loop Blockings Loop blocking or strip mining is a transformation that creates doubly nested loops out of
single loops, by organising the computation in the original loop into chunks of equal size [PaWoS6]. Loop
blocking can be useful in many cases. It is often used to manage vector registers, caches, or local memories
with small sizes. Many vector computers for example have special vector registers that are used to store
vector operands. Loop blocking can be used to partition vector statements into chunks of size K, where K
is the length of the vector registers. The following loop

DO I = 1, N
A(I) = B(I) + C(I)

ENDO

will become (after blocking)

DO J = 1, N, K
DO I = J, MIN(J+K, N)

A(I) = B(I) + C(I)
ENDO

ENDO

In the same way blocking can be used to overcome sise limitations of caches and local memories. In
parallel-vector machines operations with long vector operands can be partitioned into shorter vectors,
assigning each of the short vectors to a different processor. In this case loop blocking will introduce a
parallel loop as in the following example. Consider the vector statement.

A(1:N) = B(1:N) * C(1:N)

In a system with P-processors (and if N> >P), this vector operation can be speeded up further by block-
ing it as follows.

K = TRUNC (N/P)

DOALL I = 1, P
A((I-1)K+1:IK) = B((I-1)K+I:IK) *

C ((I-I) K+I: IK)

ENDO

A(PK+1:N) = B(PK+I:N) * C(PK+1:N)

Notice that iteration pealing was implicitly used to eliminate the use of the intrinsic function MIN in the
DOALL statement.

Cycle Shrinkings Cycle shrinking transforms a serial DO loop into two perfectly nested loops; an outer
serial and a parallel Inner loop (PolyS8]. It is based on the observation that although there is a static flow
dependence S,6bS between two statements S, and S 2 of a loop, there may be instances of S, and S2 that
are not involved in a dependence (if the dependence distance is greater than one). Cycle shrinking extracts
these dependence-free instances of the statements inside a loop, and creates an inner parallel loop. Con-
sider for example the following loop.

DO I = 1, N
X(I) = Y(I) + Z(I)
Y(I+3) = X(I-4) * W(I)

ENDO

Such a loop would be treated as serial by the existing compilers. However, if cycle shrinking is applied the
same loop will be transformed to the following one.

DO J = 1, N, 3
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DOALL I = J, J+2
X(I) = Y(I) + Z(I)
Y(I+3) = X(1-4) * W(I)

ENDOALL
ENDO

The transformed loop can now be executed X=3 times faster, where X is the cycle reduction factor. The
larger the distance X, the greater the speedup. Consider a DO loop with k statements which are involved in
a dependence cycle. If the reduction factor for that cycle is X, cycle shrinking results in an improvement
factor of X*k. This is true since not only the iterations of the DOALL loop created by cycle shrinking are
independent, but the statements inside each iteration are also independent. Thus parallel loop execution
can be combined with parallel execution of the statements of each iteration.

Loop Spreadings Few transformations exist for interloop optimisations and all of them regard memory
related optimisations (e.g., loop fusion [WolfS2]). Loop spreading extracts parallelism from loops in cascade
[GiPoSSb]. In particular, loop spreading is most useful for chains of serial loops with interloop depen-
dences. The transformation works by pairing off iterations from different adjacent loops and executing
those iterations in parallel. Thus the expected speedup improvement is bounded by the number of serial
loops in a chain. In this section we give an example of a simple case of two serial loops with interloop
dependences. A complete version of loop spreading appears in [GiPo88b].

Let B, and B2 be two serial loops in sequence and let fli(j) denote the i-th iteration of B,. The
transformation will produce a new serial loop such that each iteration of the new loop will execute one
iteration of B, (say 6,(i)) and one iteration of B2 (say #2(i-k)) in parallel. The problem is to determine
which iterations should be combined in order to maximize the parallelism yield by loop spreading. This is
equivalent to computing the best value of k in 62(-k). Consider for example, the following serial loops
with interloop dependences.

DO I = 1, 10
X(31+4)= A(I-1)+i

A(I) = Y(-21+25)
ENDO

DO I = 1, 10
D(I) = X(41+2)

X(I+I) = D(I)**2 + D(I-1)
E(I) = Y(-21+23)

ENDO

Notice that loop spreading does not alter the order of execution of the iterations of each loop. Thus, loop
contained dependences are satisfied in all cases. The transformation must assure that interloop depen-
dences are also satisfied, by choosing a value of k such that the pair-wise parallel execution of iterations of
the two loops does not violate any dependence. Or equivalently, if iterations #,(i) and #2(i-k) are to be
executed in parallel we must verify that no flow, anti, or output dependences exist for all i such that
1 < i < N. It is clear that for maximum parallelism we must choose the minimum value of k, which in the
case of the above example is k-3. Hence after loop spreading the above loop becomes

DO I =1, 10
COBEGIN
#I (I) ;

IF(I> K) THEN #,(I-3);
COEND

ENDO

DO I =8, 10

f2 ()

211



ENDO

Assuming 61(I) and 2(I) take the same time, r, to execute, the total execution time of the original loops is
20r, while that of the transformed loop is 13r. This is the best possible overlap for the above example.

Run-Time Dependence Testing Most techniques that have been developed to analyze array subscripts

and determine loop dependences, solve this problem at compile-time. This of course is desirable because
there is no run-time overhead. Another alternative would be to determine data dependences dynamically

at run-time. The next transformation (run-time dependence checking or RDC), does precisely this. When
the dependence distances vary between different iterations, cycle shrinking is rather conservative. RDC is a

more suitable technique since it sequentialises only those iterations that are involved in a true dependence.

All remaining iterations can execute in parallel. Consider for example the following loop

DO I = 1, N
A(21-1) = B(I-1) + 1
B(21+I) = A(I+1) * C(I)

ENDO

The distance of the flow dependence from the first to the second statement can take the values 1, 2, 39....
RDC has two phases. An implicit and an eplicit phase. The implicit part involves computations performed
by the compiler which are transparent to the user. The explicit phase transforms the loop itself. The basic

idea is to be able to determine at run-time whether a particular iteration of a loop depends on one or more

previous iterations. This requires some recording of relevant information from previous iterations. For a

loop DO I = 1, N and for a dependence S 6
i $ + in that loop, we define the dependence source vector

(or DSV) R1 to be a vector with N elements, whert non-zero elements indicate the values of I for which

Si is a dependence source, and zero elements in R, correspond to values of I for which S, is not involved

in a dependence. The elements of DSV are initialized to zero by the compiler. A single bit-vector V with
subscripts in the range [1...N] is also created and is initialized to zero. Vector V is called the synchroniza-

tion vector.

Following initialisation, the compiler inserts in the transformed loop code which records dependence

sources and synchronizes dependence sinks on their corresponding sources. Even tho,gh the compiler
inserts dependence-testing code in a loop, the actual dependence resolution occurs during the execution of

the loop. The transformed version of the previous loop is shown below.

DOALL I = 1. N
COBEGIN

IF (1<R,(I+1) < I) WAIT ON V(I+1):

IF (1<R,(I-1) < I) WAIT ON V(I-1):
COEND

A(21-1) = B(I-1) + 1
B(21+l) = A(I+1) * C(I)
CLEAR V(I)

ENDO

Run-time dependence checking belongs to a family of transformations called hybrid (static and dynamic)
transformations. In all cases the principle is the same: if the compiler cannot resolve a particular problem

but it can precisely identify the problem, it can generate code which solves that problem during execution,
when run-time information becomes available.

7. Partitioning, Synchronization, and Scheduling

In Sections 5 and 6 we reviewed manual parallel programming through the use of parallel languages,

and automatic program restructuring via parallelising compilers. However, the major advantage of paral-

lelising compilers is not only automatic parallelisation of serial programs, but the;r ;-1,,-ntial to automate

the process of program partitioning, synchronization, and scheduling (which are by far more complex than

parallelism detection and often ad hoc).
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7.1. Partitioning and Task Formation

Program partitioning is one of the most important phases of parallel programming. It is closely
linked to scheduling and even though it is discussed separately here, partitioning should be considered in
conjunction with scheduling. Informally, the partitioning phase decides which modules of a program can
execute in parallel and how. A parallel program can be represented by a directed graph called the task
graph, where nodes represent program modules and arcs represent ordering and dependence relations
between nodes. The nodes of a program graph are called tasks. A task can consist of a single or multiple
user processes or u-processes. U-processes are units of code with their own instruction stream and private
memory space. Thus tasks are static entities which simply correspond to specific modules of a program.
On the other hand u-processes are generated from tasks upon dispatching, and in addition to their code
they own part of the virtual address space.

So far partitioning has been treated mostly from a theoretical point of view as a problem which is
often decoupled from scheduling [Bokh88]. Most of the existing partitioning algorithms assume an ideal-
ised representation of a program which usually takes the form of a directed graph as the initial representa-
tion. This graph can represent a user-defined partition or a compiler representation of the program graph
(e.g., control flow or data dependence graph, or a higher-level program representation). Nodes represent
tasks and arcs represent communication channels between tasks. Such graphs are evaluated under the
assumption that each node may execute on a different processor at any time. Assumptions such as known
execution times of nodes and communication weights among nodes, are then used to derive a more efficient
task graph. This can be done by merging nodes together to eliminate heavy communication links, or by
splitting large nodes into smaller ones to increase the degree of parallelism in the graph. The end-result is
a more efficient representation of the program graph or even an explicit assignment of groups of nodes to
specific processors. Even though the above models are far from being representative of real programs, the
algorithms which have been developed can be used for approximate solutions and have contributed to the
analysis and understanding of many important aspects of the problem.

On a more practical basis the partitioning problem can be considered from two different angles: the
data and the instruction stream viewpoint. In the first case, partitioning is based on the decomposition of
data objects upon which computation is performed. Each processor is assigned the work corresponding to a
specific data domain. This form of partitioning is often called data partitioning or horizontal partitioning.
Data partitioning is feasible when the same type of computation is performed on all data domains. Typical
computations of this type include loops and other repetitive computations, i.e., the same u-process is exe-
cuted for each data domain.

The second type of partitioning called functional or vertical partitioning results in the formation of
tasks from syntactically identifiable pieces of code. Thus different partitions operate on different data
objects or on the same data object but in some specific order. For example, forming two tasks out of two
disjoint outer loops or two different subroutine calls is a case of functional partitioning. Another common
term for functional partitioning is high-level spreading. Partitioning must be done such that the following
goals are met.

o The tasks formed by partitioning a program should be as independent as possible, i.e.,
sharability of data objects between tasks should be minimal. This implies that data
objects should be decomposed such that different components correspond to different
tasks. Notice that both data and functional partitioning conform to this requirement.

e Tasks should be of approximately equal size. As it will be shown later, this helps in
balancing the load across processors by using simple and fast scheduling heuristics. Data
partitioning tends to satisfy this requirement while functional partitioning does not.

a The sise of the tasks formed should be a function nlf the overhead incurred during task
scheduling and the synchronisation overhead. Put in other words, tasks should be large
enough compared to the overhead involved inorder to achieve any speedup. Roughly
speaking, this means that the total overhead associated with the parallel execution of a
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task should be less than the its serial execution time.

* A balance must be achieved between communication and scheduling overhead, and
degree of parallelism in a task graph. These two objectives are inconsistent since minimiz-
ing overhead tends to merge all tasks into fewer large tasks, while increasing the degree of
parallelism (i.e., the number of independent tasks in the graph) tends to decompose large
tasks into their smallest constituents. The degree of parallelism should be considered in
conjunction with the number of available processors.

a Finally partitioning should be based on realistic assumptions about the program. For
example, the type of a task is readily available to the compiler but the execution time of a
task is not. If exact algorithms are used for partitioning, e.g. critical path, they should be
adapted to compensate for inaccuracies.

Even though we will return to the partitioning issue later in this paper, for now we assume that this phase
provides the following phases of parallel programming with a well-defined decomposition of a program
into a set of tasks.

7.2. Synchronisation and Communication

Depending on the architecture of the target machine, explicit synchronization or communication
instructions must be inserted in a parallel program to ensure correct parallel execution. Again we look at
the problem from the compiler point of view. Synchronisation may or may not be needed depending on the
order of task execution. For example, if different tasks involved in a data or control dependence are
allowed to execute in parallel, then explicit synchronisation instructions must be inserted. Another type of
synchronisation is needed if tasks are restricted to execute in parallel only if they are independent; in that
case a single (barrier) synchronization point between two tasks will suffice. Similarly, in the distributed
memory case, appropriate messages should be explicitly routed between different tasks. However, commun-
kation within a single processor (task) can take the form of synchronization through the local memory (a
much less expensive operation).

Synchronisation and/or communication introduce overhead during parallel execution. As mentioned
earlier, overhead estimates are used In deciding how a program can be partitioned into tasks. Thus, prior
to partitioning, it must be known where synchronisation and communication is needed. This information
need not be in the form of the corresponding instructions; cost and some qualitative information is
sufficient for determining overheads. After partitioning has been specified, only those synchronisation
instructions needed to enforce the dependences expressed in the task graph need to be inserted in the pro-
gram.

Alternatively, synchronisation and communication instructions can be inserted in a program wher-
ever applicable. After partitioning and possibly scheduling, an optimisation phase must follow to eliminate
redundant synchronisation and communication instructions. Approaches to the later optimization problem
are reported in [IPage]. It is also clear that the static or dynamic nature of partitioning and scheduling
affect4 directly the generation and optimization of synchronisation instructions. For example, if a task is
allowed to disintegrate dynamically during execution, static synchronisation (which must consider the
worst case) may result in superfluous synchronisation at run-time.

7.3. Scheduling and Overhead Analysis
Scheduling is one of the most performance-sensitive phases of parallel programming. Deciding what

task or process executes on what processor and in what order is a nontrivial problem. Again, scheduling
should be done such that program finish time is minimised. Partitioning is some type of incomplete
scheduling, since it specifies an "abstract" processor allocation.

Although the end-result of scheduling (which is minimum execution time through load balancing and
low overhead) is the same for both shared and distributed memory systems, thc. . whes differ for each
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model. In shared memory parallel processors all tasks and data objects of a program are equally accessible
to all processors. This simplicity allows more flexibility in scheduling tasks. In distributed memory systems
one of the early differences is the need to down-load different tasks on different processors. Adjacency of
the interconnection structure has a large implication on how efficiently scheduling can be done. For exam-
ple, if a complete interconnection is used for a distributed memory system, a task graph can be scheduled
in exactly the same way as if it was to be executed on a shared memory system, by simply translating syn-
chronization instructions to equivalent message passing instructions. However, if the interconnection is
more sparse (e.g., hypercubes), different issues arise. Besides the extra overhead of down-loading, one needs
to face other problems such as process migration and nonuniform communication costs which further com-
plicate the overall optimization problem.

Unless a precise static allocation is achieved process migration should be allowed to balance the load
across the entire system. Because exact program information is unavailable at compile-time, a large
number of scheduling algorithms for distributed systems is based on the process migration principle; thus
allowing quick initial allocations which balance themselves by transmitting and receiving other tasks from
neighboring processors. This activity introduces significant space and time costs since its implementation
requires for each processor the maintenance and update of load-tables regarding adjacent processors. If
system-wide migration is allowed, then in a p-processor machine each processor needs to maintain load
information for the other p-I processors. Moreover, since migration outdates this information, periodic
system-wide updates must take place by having processors exchange load information among themselves.
Even though the above is the best approach for achieving the most perfectly balanced load, it incurs a
tremendous overhead. A middle-ground solution is to define neighborhoods of processors and allow process
migration only within each neighborhood. Thus load tables and updates occurs independently within each
group by compromising load balancing. How these neighborhoods are defined depends heavily on the inter-
connection structure and a number of other parameters. Down-loading, communication, and process
migration have a profound affect on task granularity. Because all these extra scheduling activities are ord-
ers of magnitude more expensive that simple synchronization, tasks need to be much larger inorder to
effectively amortise the overhead and achieve speedups over serial execution. Increasing substantially the
granularity of tasks results in decreasing the degree of parallelism of a program, Therefore, it also restricts
the number of applications which can benefit from parallel execution on such systems.

In contrast, none of the above activities, besides synchronization, occur during scheduling in shared
memory parallel machines. Migration is not necessary since due to sharing of common memory and in
terms of cost, such a system can be thought of as completely connected - the communication cost between
any pair of processors is constant. Moreover, down-loading is not necessary (except is the case of fully
static scheduling). Tasks can remain in shared memory and be dispatched by processors as needed. This
greatly simplifies the scheduling problem for such arch;f.tures, but even in this simpler form, scheduling
remains a crucial albeit all but trivial problem to solve.

Thus, based on the above issues, if one was to judge conformable (comparable) shared versus distri-
buted memory parallel architectures based on the scheduling issue alone, the superiority of the former
architecture model is clear. Of course, if very "dense" interconnection structures are employed for distri-
buted systems this advantage drifts away. Nevertheless, one can argue that in such a case the cost of build-
ing multiport nodes may become prohibitive and we soon converge to an architecture which can be more
effectively realised as a shared memory.

The remaining discussion on scheduling focuses on shared memory architectures even though many
of the ideas discussed can also be applied to distributed memory systems. There are three fundamental
approaches to scheduling: static, dynamic, and hybrid. Each approach depends on how much information
about a program is available to the scheduler, as well as on the phase this information becomes available.
We consider below each approach separately.

* Static scheduling: As implied by the term, static scheduling can be performed either by the programmer
or by the compiler before program execution. Parallelism is exploited by spreacing different computations
over different processors statically. Thus, the programmer knows exactly what parts of a program will exe-
cute on each processor. For static scheduling to be effective one needs to have detailed knowledge about a
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Type of Best Average Average Other Average Detail of

Scheduling OS mode balancing synch/comm run-time complexity program info

overhead overhead needed

Static monoprog. low low low high high

Dynamic multi/mono high high high low low

Hybrid multi/mono moderate moderate moderate moderate I moderate

Table 2. Characteristics of scheduling strategies.

program (such as the outcome of conditionals, the size of loops, etc) available in advance. Knowledge
about the architecture of the target machine (e.g., number of physical processors, timing of 1/O and func-
tional units) is also necessary. Such details are not usually available but coarse estimates can be supplied

by the programmer or the compiler.

The main advantage of static scheduling is its low run-time overhead; no scheduling activities occur

during program execution. It is also easier to trace the execution of a statically scheduled parallel program

and thus, debugging becomes less of a problem. Overhead however is paid during compilation or in terms

of programming time. Static scheduling algorithms involve usually polynomial or even exponential corn-

plexity. Therefore, more time is spend at compilation. The major drawback is the unrealistic, in general,

assumptions upon which static scheduling is based. The result is typically an unbalanced load. Since

parallel execution time is defined by the last processor to finish, unbalanced load results in longer parallel
execution times and low machine utilization. In general, pure static scheduling is not a suitable approach

for general-purpose parallel machines. It can be effectively used for specialised architectures such as sys-

tolic arrays or VLIW-based machines.

Dynamic scheduling: Dynamic scheduling is complementary to static in both its advantages and disad-
vantages. Dynamic scheduling is implemented at run-time through the operating system, the compiler, the

hardware, or a combination thereof. Scheduling is based on simple, typically constant-time heuristics
which work satisfactorily in most cases. Knowledge about program characteristics is not needed; at best

some qualitative knowledge can be useful. The major drawback of dynamic scheduling is the run-time
overhead that it incurs. Since decisions are taken during program execution, scheduling activities waste

processor cycles. The more sophisticated the scheduling heuristics the higher their complexity and thus the

higher the overhead. On the other hand, dynamic scheduling achieves the highest degree of load balancing
under the same initial conditions.

In principle, dynamic scheduling can be used at all levels or task granularity starting from the
instruction level up to the program level. However, the suitability of a particular scheme depends on many
factors such as the complexity and the overhead in both time and hardware. For general purpose parallel
processors dynamic scheduling is most appropriate for large-to-medium granularity tasks.

* Hybrid scheduling: Since static and dynamic are complementary approaches with respect to balancing
and overhead, a combination of the two may result in more efficient implementations of scheduling on the

average. Few hybrid schemes have been designed or implemented on real machines. ,ven though they
involve more complexity from the design and implementation perspectives, they do uder the most attrac-

tive alternative.

During hybrid scheduling, some of the scheduling takes place at compile-time and some at run-time.

Qualitative information about programs is usually enough for hybrid schemes to work efficiently. We
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overview such an approach in Section 8. Static partitioning with dynamic task scheduling is a type of
hybrid scheduling, since partitioning directly affects scheduling as indicated earlier. Table 6 summarizes
the various approaches to parallel program scheduling and their characterstics with respect to complexity,
overhead, load balancing, and input information needed about the subject program.

7.a.1. Loop Scheduling, Microteaking, and Macroteaklng

Cray Research was the first supercomputer vendor to introduce software which supported the
specification and scheduling of parallel constructs on the Cray X-MP series. This software known as multi-
tasking provided only the environment for creating and executing tasks of the same program on different
processors, but it left the responsibility for defining, scheduling, and synchronizing tasks to the program-
mer. The multitasking environment was based on a collection of macros which allowed the user to create
processes (much like Unix processes) through calls to the operating system. These invocations to the
operating system made multitasking a very expensive means for exploiting program parallelism. In addi-
tion, tasks needed to be organised as subroutines with the extra overhead of subroutine call paid for every
instantiation of a new task. The overhead associated with multitasking made it useful only in cases where
large subroutines could execute simultaneously. Many other parallel computer vendors followed with
different implementations of multitasking.

Later versions of multitasking software avoided excessive overhead and made parallelism exploitation
at the loop level possible. Multitasking at the loop level is more commonly known as microtasking. Micro-
tasking works much the same way as multitasking with the main difference being that operating system
involvement is kept minimal. Instead of invoking the operating system to create a process and allocate
space for it every time a new task needs to be initiated, microtasking creates a number of processes at the
beginning of program execution. These processes which we call here system processes or s-processes
remain live throughout the execution of a program. When a u-process (task) needs to be scheduled for exe-
cution, an s-process is fetched from a queue of s-processes and it is bound to that particular u-process.
This is when an s-process receives contezt and it is called an s-process with context or s-c-process. Upon
completion of the execution of an s-c-process the a-process is not destroyed (as it was the case with early
versions of multitasking), rather it returns as an empty s-process to the above queue, and it can be used
later to execute another u-process form the same program. Thus s-processes function as vehicles which
carry u-processes through execution in a physical processor.

Micortasking avoids unnecessary overhead by reusing s-processes within each program. In more
efficient implementation of microtasking s-processes are created not just once per program, but once when
the system is cold-started and they are bound to u-processes from possibly different user programs at the
same time. Thus the overhead is further reduced. The number of s-processes so created is a system param-
eter and it depends among others on the number of physical processors and memory space available.
Micortasking is commonly used for the execution of parallel loops by many processors. In most cases each
different loop iteration is bound to an s-process.

Microtasking as described above is a suitable solution for loop scheduling (data partitioning) but not
necessarily for high-level spreading (functional partitioning) where the definition of a task is arbitrary.
During the execution of parallel loops all s-processes inherit the same calling environment, but this is not
always the case with tasks generated from high-level spreading. To support parallelism at this level multi-
tasking is still used under the distinguishing term of macrotasking. Macrotasking is a more tunned imple-
mentation of multitasking but it is based on the same framework.

It is important however, to realize that microtasking and macrotasking provide the environment
which supports parallel programming at the user-level but they do not offer solutions as to how tasks
should be organized (partitioning), synchronized, and scheduled. This is still the programmer's or the
compiler's responsibility. In Section 8 we discuss a more general environment which in addition to provid-
ing capabilities equivalent to micro and macrotasking, it automates the process of partitioning and
scheduling in a unique way.

Loop Scheduling (Process Level)
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Loops in numerical programs can be fairly complex with conditional statements and subroutine calls.

A general solution should distribute iterations to processors at :un-time based on the availability of pro-
cessors and other factors. However, the overhead associated with run-time distribution must be kept very

low for dynamic scheduling to be practical. We consider here three possible schemes for loop scheduling.
The first two are well-known and one or the other is used by most modern parallel machines; the third is a
more efficient approach. The three schemes differ in the number of loop iterations that they assign to each
idle processor, and thus in the balancing of load and the total execution time.

One Iteration at a Time (Self-Scheduling)s This scheduling scheme is commonly referred to as self-

scheduling. An idle processor picks a single iteration of a parallel loop by exclusively incrementing the
loop indices [Smit81], [TaYeSS]. Thus if N is the total number of iterations of a loop, self-scheduling

involves N dispatch operations. Roughly speaking, if p processors are involved in the execution of the

loop, then each processor gets N/p iterations. Let B be the average iteration execution time and a the

overhead involved with each dispatch. Then self-scheduling is appropriate if B >> a and there is a large

variation of the execution time of different iterations. Because self-scheduling assigns one iteration at a

time, it is the best dynamic scheme as far as load balancing is concerned. However, a perfectly balanced

load is meaningless if the overhead used to achieve it exceeds a certain threshold. Overall, self-scheduling
may be appropriate for loops with relatively small number of iterations which have variable execution
times, and only if a is small compared to B.

Chunk-Schedulings chunk-scheduling is in principle the same as self-scheduling. But in this case, a

fixed number of iterations (chunk) is allocated to each idle processor (as opposed to a single iteration at a

time). By doing so, one can reduce the overhead by compromising load balancing. This is clear since the

unit of allocation is of higher granularity now, and thus the potential variation of finish time among the

processors is also higher. There is a clear tradeoff between load balancing and overhead. At one extreme,
the chunk site is roughly N/p and each processor performs only one dispatch per loop. The variation of

finish time is also the highest in this case. At the other extreme, the chunk size is one and we have self-

scheduling with perfect load balancing and maximum overhead. Intermediate values of the chunk size in

the range [1... fN/p 1 will produce results that are better or worse than either of the extreme cases. The
main drawback of chunk-scheduling is the dependence of chunk site on the characteristics of each loop
which are unknown even at run-time. Worse yet, even for the same loop, the execution time is not mono-
tonous with monotonically increasing or decreasing chunk size. This makes the derivation of an optimal

chunk size practically impossible even on a loop-by-loop case.

Guided Self-Scheduling# Self-scheduling achieves a perfect load balancing but it also incurs maximum

overhead. On the other hand chunk-scheduling is an (unsuccessful) attempt to reach a compromise

between load balancing and overhead, and the result maybe quite unexpectable. The third scheme, guided
self-scheduiing (or GSS) [PoKu87l, is in general, a much better and more stable approach to reach this

compromise. The idea is to start the execution of a loop by allocating chunks of iterations whose sire starts
from [NI/p1 and keeps decreasing until all the iterations are exhausted. The last p-1 chunks of iterations
are of size one. Thus, chunk sizes vary between the two extremes. Figure 2 gives the GSS algorithm.

The advantages of GSS are many. First, the property of decreasing chunk size is built-in and no

extra computation is required to enforce this policy. This simplicity allows for easy and efficient implemen.

tation. Secondly, the two main objectives of perfectly balanced load and small overhead are achieved
simultaneously. By allocating large chunks at the beginning of the loop we keep the frequent dispatching
and thus the overhead low. At the same time, the small chunks at the end of the loop serve to "patch

holes" and balance the load across all processors. For some ideal cases, GSS is provably optimal. This can-
not be said for either self or chunk-scheduling. GSS has been implemented in th.' Cray's autotasking

library as well as in DEC's Fortran 5.0 compiler. For a parallel loop with N iterations the average

number of dispatch operations per processor for self, chunk, and guided self-scheduling is N/p, N/kp, and

log, (Nip) respectively.
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Guided Self-Scheduling

Input A parallel loop L with N iterations, and p processors.
Output The optimal dynamic schedule of L on the p processors. The schedule

is reproducible if the execution time of the loop bodies and the
initial processor configuration (of the p processors) are known.

* If R1 is the number of remaining iterations at step i, then set R, = N, i=1,
and for each idle processor do.

REPEAT

* Each idle processor (scheduled at step i) receives

iterations.

" Rj+j ff Ri - 2,.

" The range of the loop index is I E [N-Rj+1.., N-R,+z]

oi=i+l

UNTIL (R, =0)

Figure 2. The GSS algorithm.
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Fortran C
Preprocessor Preprocessor

PARAFRASE-2 ---- Program
Database

Figure 3. The structure of the Parafrase-2 multilingual compiler.
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Input Program
Serial/Parallel

f Parallelising Compiler
(Parafrase-2)

Parallelism
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Partitioner

Pre-Scheduler

Drive Code Generator

& Optimiser

Parallel
Self-Driven ProgramD

Figure 4. The major modules of an auto-scheduling compiler.

8. A Performance-Oriented Environment for Parallel Programming

In this section we discuss our approach to a fully automated environment for automatic, efficient,
and effective parallelism specification and exploitation. Having considered partitioning, synchronization,
and scheduling in a general context, it should be easy to justify our approach to an integrated program-
ming environment in the Parafrase-2 project.

The organization of Parafrase-2, the first mutilingual parallelising compiler to be built, is shown in
Figure 3. This ongoing project at the University of Illinois' CSRD, aims to develop a single parallelizing
compiler for many popular programming languages (PGHL89. Even though at present the system com-
piles C and several Fortran dialects, provisions have been made to add Pascal and other languages in the
future. Adding a new language involves a preprocessor for that language, which translates a source pro-
gram into a common intermediate representation. The major emphasis of the Parafrase-2 project is the
second phase of parallel programming, namely that of parallelism exploitation. In the rest of this section
we describe our approach to this latter part of the compiler.

221



There are advantages and disadvantages to each scheduling approach. With the growing variety and
complexity of parallel architectures monolithic approaches to program scheduling become obsolete. Both
compilers and run-time systems need to cooperate in order to achieve desirable results. Pure static schemes
are too unrealistic to be practical. Similarly, pure dynamic schemes that ignore useful program informa-
tion are bound to fail badly in certain cases [Polys88. An ideal scheduler should use to its advantage infor-
mation about a program, but it should also operate in the "obvious and least expensive" mode whenever
information is inadequate. Our approach to the parallelism packaging and scheduling problem is a blend of
compiler and run-time schemes. Figure 4 shows the diferent components of our framework as parts of
what we call an auto-scheduling compiler [Polyss.

Partitioning and qualification of paralelim: This phase is responsible for partitioning the code (and/or
data structures) of a program into identifiable modules which are treated as units when it comes to firing.
For example, compiling vector or VLIW instructions, or grouping a set of instructions into a unit is part of
partitioning. Program partitioning can be done statically by the compiler. In a fully dynamic environment
(e.g., datafdow) partitioning is implicit and depending on our execution model, an allocatable unit can
range from a single instruction to a set of instructions. Static (explicit) partitioning is desirable because it
exploits readily available information about program parallelism and can consider overhead and other per-
formance factors. In our case we use a semi-static partitioner: the formation of tasks is based on the syn-
tax of the language and other program information, but a task is allowed to be decomposed into subtasks
dynamically during program execution. The result of the partitioner is a program task graph with nodes

(a) (b)
Figure 5. (a) A task graph. (b) The graph with entry and exit blocks.
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corresponding to tanks (instruction modules) and arcs representing data and control dependences. Another
activity of the partitioner is to perform overhead analysis and determine where tasks need to be split or
merged in order to effectively amortie the overhead that arises from dispatching and synchronizing the
components of such tasks.

Pre-scheduling. After a program is partitioned into a set of identifiable tasks, the compiler can enforce cer-
tain scheduling restrictions based on its knowledge about the program. In the presence of dynamic schedul-
ing, pre-scheduling is necessary to eliminate race conditions which may result in performance degradation.
Such conditions arise due to implementation of task queues and their access protocols. In the case of a sin-
gle task queue and under the assumption that parallel tasks remain queued until all processes are spawn
(which is often the case in real implementations), race conditions arising during queueing operations may
create "artificial" performance bottlenecks. Consider for example the case where P idle processors start
executing a program consisting of a large serial task(s) and a parallel task task(p). If task(p) is queued in
front of task(s), and assuming that taak(p) is large enough to spread across all P processors, then task(s)
will execute only after the parallel task has completed, and thus P-1 processors will remain idle during
the durations of task(s)'s execution time. Such scenarios can arise in more complex task graphs as well.
By giving priority to serial tasks and delaying parallel tasks for as long as all processors are busy, such
performance hazards can be eliminated.

Dynamic task scheduling (nested parallel tasks): Scheduling at the task level is then performed dynamically
during execution. Traditionally, dynamic task scheduling has been supported through the operating system
directly, or indirectly through the run-time system (e.g., earlier versions of Cray multitasking). The major
drawback to this approach is the enormous overhead involved in OS invocations.

The auto-scheduling approach proposed in [Poly88J is based on the idea that the program itself is
responsible for packaging and managing its parallelism, and thus the processors allocated to it. Under an
ASC environment, the compiler which has access to vital program information, generates drive-code for
each task in the task graph representation of a program. Each task is instrumented with an entry-block
(ENT-BLK) and an ezit-block (EXT-BLK). An example of a program task graph is shown in Figure 5a.
After drive-code generation the same graph is instrumented as in Figure 5b. This drive-code is responsible
for recording precedence relations, enforcing synchronization, queueing and dequeueing tasks, and decom-
posing parallel tasks into their constituent processes.

Tasks are treated as units of execution. Tasks which are ready to execute are queued in a ready-task
queue. The ready-queue is also a data structure created, owned, and manipulated by each user-program.
Each idle processor tries to dispatch the next available task from the queue (if any). Also, tasks are queued
and thus are qualified for execution as soon as they become "ready". It is important to note that parallel
tasks are dynamically decomposed into a number of smaller processes whose size and requirements depends
on the scheduling scheme used. For example parallel loops can be decomposed under the GSS algorithm to
achieve load balancing while keeping run-time overhead low. In a simplified scenario each physical proces-
sor executes the following loop.

LOOP FOREVER
- pick front queue image;
- load program counter:
- execute;

END LOOP

Part of task execution involves the execution of the drive-code in the task exit-block which updates other
tasks and queues their corresponding images. A typical task exit-block which is shown below

EXIT-BLOCK:

Task-dependent module:
-Barrier synchronization;

-Select processor to dequeue current task:
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-Select processor to execute the following;

Task-independent module:
FOR (all successors of current task) DO

-Update (dependences of) successors;

-Queue freed successors;
ENDFOR

consists of two modules, the task-dependent and task-independent modules. The former is code that the
compiler generates to perform barrier synchronisation (in the case of parallel tasks), select the processor to
dequeue the corresponding task from the queue (e.g., the processor to dispatch the last iteration of a loop),
and select the processor to execute the second module of the exit-block (in a parallel task that processor
will be the one to clear the barrier). The latter module is independent of the type of the task. Only a
specific processor (selected by the first module) executes this part. The code in this module updates the pre-
cedence relations and queues those successors that have no pending predecessors. Similarly, entry-blocks
are organised in two modules, a task-independent and a task-dependent module as shown below.

ENTRY-BLOCK:

Task-independent module:
-Allocate private variables and/or stack space:
-Copy parent stack (optional);

Task-dependent module:
-Execute initialization code (if any):
-Compute number of iterations for this processor:

-Update loop indices:

Loop (or parallel task) scekduia. Upon queueing, a serial task is dispatched at once as soon as a processor
becomes idle. However, a parallel task can draw several processors to execute it and thus it remains queued
until exhausted. The most frequent and important type of parallel tasks are parallel loops. Section 7.3.1
discussed and compared existing and new approaches to dynamic scheduling of parallel loops. These loop
scheduling schemes can be viewed as dynamic partitioning of a loop into a set of allocatable units.

Wtkhi a procesor. We finally face the problem of scheduling within a processor at the fine granularity
level. Packaging of parallelism and scheduling at this level is more architecture dependent than any of the
earlier phases of program scheduling [Nico84].

9. Multlproeeseor Operating Systems

Traditionally, the terms "parallel processing" or "multiprocessing" refer to the parallel execution of
different components of a single application. If carried to the extreme, parallel processing is best realised in
a batch environment where applications programs execute one after another, and at any given moment,
only one program executes on a parallel machine. At the other extreme, a parallel processor machine can
be used as a purely multiprogramming box to boost throughput rather than individual turnaround time.
Unfortunately, many of today's parallel computers are used in the latter mode of operation. This is
mainly due to our little experience and understanding about the new operating system issues brought for-
ward by parallel computers. Classical OS problems such as processor and memory allocation need to be
reconsidered for parallel machines [Rash8], [Poly89].

From the machine utilisation point of view the best mode of operation would be somewhere between
the two extremes: multiprocessing and multiprogramming at the same time. We call this polymorphous
processing or polyproeess.sg. Few systems support some primitive flavor of polyprocessing. Table 7 gives
an operating system taxonomy based on three fundamental properties. According to this taxonomy an
operating system is classified based on whether it is a Single-user (batch) or Multi-user system, whether it
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allows Preemption or Non-preemption, and finally on whether it supports Serial or Parallel program exe-
cution.

In Table 7 a three-letter abbreviation is used to denote each clasa. Clearly, the case of SPS is not
desirable. All other classes are viable cases including the single-uaer/preemptive/paralel or SPP. The
multi-user/preemptive/serial or MPS class characterizes the majority of the operating systems of modern
parallel computers. Even though several machines are promoted as NIPP systems, only in rare cases one

can operate effectively under this mode.

More research needs to be done in evaluating the merrits and drawbacks of each of these classes.

Although MPP is intuitively the most desirable one, it may not necessarily be the most performance-
oriented one. Idealy, a multiprocessor OS should be adaptive, i.e., able to switch between several of the

modes in Table 7 automatically, based on the sise and the characteristics of the workload. This appears to

be the moat important feature of future multiprocessor operating systems.

In order to illustrate the significance (with respect to performance) of adaptive OS, consider a large

parallel application written e.g., in Cray or Cedar Fortran. Such a program would be heavily instrumented
with calls to the macro/microtasking library in order to receive parallel execution. Recall that each call to
the run-time system incurs a significant overhead. If that program is executed during a high workload

period, it may (based on its priority, demands, etc), end up executing serially (since a finite number of phy-
sical processors need to be shared between a large number of jobs). Thus, all the overhead paid for creat-

ing parallel processes, scheduling, and performing meaningless synchronisation may be pointless. On the

other hand, the same program may execute overnight on an idle system, in which case, it will execute in

parallel justifying the overhead of e.g., macro/microtasking. Of course, it is impossible and impractical for

the user to edit the code each time the program runs. This should be the responsibility of the OS: based on

its knowledge of the workload, it can selectively deactivate (some) parallel processing directives in certain

programs, which may end up executing serially any way.

In order to built such sophistication into an OS, compiling and operating system issues need to be

considered simultaneously. For instance, in an auto-scheduling environment, the responsibility of the OS

is to direct idle processors to user program queues, in order to accomplish multiprogramming. It is then

the user's program sole responsibility to manage the allocated processor(s) on its own tasks. Some proces-
sor allocation issues for adaptive OS are discussed in [Polys9].

10. Conclusions

The lack of methodologies and software to support parallel programming is profound even on the
most advanced parallel machines. Parallel programming is a complex task and the performance of a paral-

lel program can be influenced by many different factors such as coding of parallel constructs and/or res-

tructuring, scheduling schemes and scheduling overhead, synchronisation and/or communication cost,

Sing'e-user Multi-user

Serib l Parallel Serial Parallel

Preemptive SPS SPP MpS MPP

Non-preemptive SNS SNP T NS MNP

Table 7. A multiprocessor operating system taxonomy.
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program and data partitioning and memory allocation. Since there is no general quantitative or even
qualitative measure for these parameters, the process of optimising one or more of them is highly empiri-
cal, and definitely, application dependent. Presently the state of the art necessitates parallel programming
on a case-by-case (i.e. application) basis. This is probably the most serious barrier in the wide-spread use
of parallel machines and programming.

The restructuring compilers of the future will undoubtly need to possess many properties that
presently, one finds only in a handful of sophisticated (but experimental) parallelising compilers. So far,
the attention has only focused on optimization and restructuring techniques. However, the complexity of
the new parallel machines requires the compiler to perform many additional functions than just restructur-
ing. Scheduling is a candidate for the compilers of the near future. Memory management, minimisation of
interprocessor communication, synchronisation and various other types of overhead are important issues
that could be tackled by the compiler. Another important aspect of the near future compilers for parallel
machines is ease of use and interaction with the user. There are many cases where the user's assistance (in
the form of assertions for example) is necessary for parallelising a program and exploiting the resulting
parallelism.

It is very likely that in the next few years we will see a transfer of many run-time activities (that are
now considered the operating system's responsibility), to the compiler. This will become necessary as per-
formance becomes more of a critical factor. Any activity involving the operating system is known to
involve a large overhead. This overhead cannot be tolerated above a certain point. Also, in time-sharing,
systems knowledge of specific program characteristics is not necessary to achieve high throughput. In
parallel processor environments however, knowledge of program characteristics is necessary for minimizing
program turnaround time. Thus the shift of operating system functions to the compiler will be a logical
consequence. Compilers will become highly interactive and far more complex than modern restructurers,
while the software layer between the user and the hardware called the operating system will become
thinner, at least in high performance computer systems.

Parallelism in algorithms and programs may be implicit, or may be explicitly specified at several
different levels. When parallelism exists in fixed--size "quantums", it is rather easy to understand and
exploit. The unstructured nature of parallelism makes its efficient exploitation and programming to be
complex tasks. Devicing methods and tools that automatically perform these tasks is thus a very impor-
tant research subject.
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1 Presentation of EWS

EWS (EuroWorkStation) is an ESPRIT II project. Its objective is the creation of a High Perfor-
mance Technical Workstation.
The members of the project are Siemens (D), BULL (F), CHORUS (F), GIPSI s.a (F), Grupo
APD s.a (E), Rutherford Appleton Laboratories (GB), INRIA (F), INESC (P), FhG-AGD of
Darmstadt University (D) and Brunel University (GB).
For our part, we realize a Multi-SPARC Workstation (with 4 processors) that can be considered as

" a Basic Part with one SPARC CPU, which will run standard ABI applications,
" a Computational Extension ( with 3 other SPARC processors). Extra computational power

will be obtained by generating a code concurrently run by the 4 processors that will synchro-
nize and share special data (contained in so-called tagged cells) via a dedicated bus which
bypasses memory accesses. To generate code dedicated to that architecture, we will customize
an existing SPARC Compiler.

The MultiSPARC architecture will allow EWS to benefit from evolutions in the SPARC family.
An aspect of our participation is to exploit parallelism on this architecture ; this article focuses on
this aspect and more precisely on the parallel execution of Fortran programs.
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2 Parallelization of Fortran Programs

2.1 Tools for Automatic Parallelization

Many Fortran dialects and many Fortran program restructuring tools flourished these last years
along with the wave of parallel processors.

Although one may claim that making sequential Fortran programs run efficiently on a parallel

architecture is easy, a simple test can outline the difficulty of the job on actual architectures [3].

On the other hand, designing a Parallel Fortran common to the various parallel architectures is
still a "work in progress" [5].

Our objectives were not to design another parallel Fortran dialect but design and implement tools
for transforming sequential Fortran applications into parallel Fortran applications and allow them
to run on a Multi-SPARC workstation.

In the EWS Project, we intend to realize a Parallelizer and a Parallel Fortran Compiler.

* The Parallelizer analyses the DO loops of a Fortran program to detect parallelism indepen-
dently on the architecture of the machine.

The output of the Parallelizer will be a Fortran Program where sequential and parallel re-
gions are distinguished and where synchronization barriers are minimized by using techniques
similar to the ones presented in [1]. BULL is in charge of the realization of the interactive
parallelizer.

* The Compiler uses the results of the Parallelizer to implement parallel execution on a Multi-

SPARC architecture. GIPSI is in charge of the realization of Parallel Fortran compiler

This work is done in cooperation with the ESPRIT project GIPE which builds an interactive

programming environment for Fortran.

2.2 Output of the Parallelizer

Currently, as a parallelizer, we use a prototype issued from VATIL which is an automatic vectorizer
created by INRIA [4]. This vectorizer was written in LeLisp [2] and used for various targets
including the vector extension of DPX-1000 ; it uses a symbolic analysis of dependences which was
partly described in [4], allowing full use of information given by the programmer. With respect
with [4], the method for computing dependences has been changed, so that integer programming
problems are solved with the help of a simplex method ; the resulting heuristics yields fairly
reasonnable times for dependence computation.

The output of the Parallelizer is a Fortran source where parallelizable Fortran DO loops are trans-

formed into a list of parallel and sequential DO loops. There are two possibles levels of output :

* one called user-level output for interaction with the user, displaying the distribution of the
original loop into parallel and sequential loops, as well as the constraints imposed on execution
by dependences ; we plan to modify the syntax of this output towards PCF Fortran [5].

* an other called compiler-level output to be read by the compiler this compiler-level ouput
contains the same informations as the user-level output but with mechanisms dedicated to
the execution on EWS.

For example, with the input:
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dimension x(100), y(lO0), z(lO0)
dimension t(lO0). w(100)
dimension u(lO0), s(iO0)

do I ± = 1,n

X(i) = y(i) + z(i)
W(i) = x(i+1) * u(i)
y(i) = w(i)+y(i+l)

u(i) = w(i)+u(i+l)
z(i) = 3 * y(i)
t(i) =t(i)*W(i)

s(i)= s(i-1)+u(i)*y(i)
1 continue

end

The parallelizer produces the following user-level output (the compiler-level output will be shown
in the forthcoming paragraphs)

CSPAULLEL REGION

CSPARALLEL DO 1

CSDIRECTIVE LOCAL={i}
do 1 i=tn
WMi =WWi*X(l+i)
t(i) =t(i)+W(i)

I continue

C$PARkLLEL DO 2 AFTER 1
C$DIRECTIVE LOCAL={il

do 2 i=l,n
x(i) = y(i)+z(i)

2 continue

C$SEQUENTrIAL DO 3 AFTER 2
C$DIRECTIVE LOCAL={i}

do 3 i=l,n
y(i) = v(i)+y(i+i)

u(i) = u(l+i)+W(i)
s(i)= 5(i-1)+u(i)*y(i)

3 continue

C0PARALLE. DO 4 AFTER 3
C$DIRECTIVE LOCAL={i}

do 4 i1=.n
z(i) = 3*y(i)

4 continue

C$EIND PARALLEL REGION

In a PARALLEL DO loop, all the iterations of the loop are independent and can be executed in
any order without any synchronization.

In a SEQUENTIAL DO loop, there are dependences between the iterations and the iterations must
be done sequentially.
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2.3 Extensions to Fortran 77

The compiler-level ouput of the preprocessor is expressed in an extended Fortan 77 where the main
extensions are :

" local variables : these are variables local to a section of code, and instantiations of that
section of code running concurrently have their own instantiation of these variables,

" reduction variables : these variables must be acceded by sections running concurrently
with mutual exclusion,

" multithreading operations : these operations allow several processors to cooperate in the
execution of a parallel region ; they are done via subroutine calls which will be inlined by the
compiler into SPARC instructions.

2.4 Impact on the Fortran Compiler

We decided to adapt the Sun 4 Fortran Compiler and to minimize our interventions into the
compiler by using dedicated pre- and postprocessors ;
We made that choice because many SPARC compilers are in development and we hope that this
strategy will allow us to adapt our works on any of these compilers at a low cost.
The two main interventions done in the compiler are :

* protect the code associated with parallel regions from optimizations, meaningful for a mono-
SPARC but erroneous for a Multi-SPARC,

" generate specific code which controls access to tagged cells.

2.5 Parallel Execution of Fortran Programs

2.5.1 Mechanisms for Communication and Synchronization

* A task is an execution environment and the basic unit of resource allocation. A task includes
a virtual address space for code and data. A Fortran program is a task.

" A thread is the basic unit of execution. It consists of all processor states necessary for
independent execution (e.g. hardware registers). A thread executes on the virtual address
space of a task. A SEQUENTIAL DO loop will be executed on one thread and a PARALLEL
DO loop will be split into several threads.

" A cell is the basic mechanism for communication and synchronization between threads. A
cell contains a data plus a tag which indicates whether the data is available' or not. The tag
of a cell has the same value, at any time, for all the processors. The cells are implemented in
a special memory space called the synchronization space.

There are three atomic operations on a cell

* LOCK
syntax: dLOCK(cll)
semantics :

wait until tag(call) m= available

ainvalable" means "readable at that moment".
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davalue (cell)
tag(cell)uunavailable

* UNLOCK
syntax: call ULOCK(celld)
semantics :

value(cell)ud

tag(cell)-available

* GET
syntax: d - GET(cell)
semantics :

wait until tag(cell) == available
davalue(cll)

Remarks :

1. Each atomic operation is inined into one RISC instruction.
2. The operations LOCK ... UNLOCK permit an access with mutual exclusion to data and

sections of code.
3. An UNLOCK not preceeded by a LOCK means an initialization of a cell (this usually

occurs in a monoprocessor section just before entering a multiprocessor section).
4. An access via GET to a cell means an access to a volatile value of the cell.

2.5.2 Execution of a Parallel Region

The output of the Parallelizer is organized in regions ; some of them are parallel regions which can
be concurrently executed by severals processors ; the other regions will be executed by only one
processor which is called the main processor.

While the main processor is running a non parallel region, the other processors are idle waiting for
the address of the next parallel region to be run concurrently. That address will be posted in a
special cell called multi by the main processor.
The run-time context of a processor is divided in two parts

" a general context which is shared by all the processors and composed of the executable code
and the data in memory and cells,

" a private context which is specific to each processor and composed of its registers and its
stack.

The distribution of the execution on the several processors brings about data transfers between the
private context of processors. One of the tasks of the code generation is to minimize these tranfers
and to correctly initialize the private region of each processor.
A parallel region is a sequence of PARALLEL and SEQUENTIAL DO loops to which are associated
threads that constitute the minimal execution unit that processors concurrently try to execute.
To a SEQUENTIAL DO loop is associated one thread ; to a PARALLEL DO loop are associated
several threads.
To each loop of a parallel region is associated a cell, the value of which indicates whether the loop
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is ready to be executed or not, and, in the former case, which threads are to be executed if it is a
PARALLEL loop.
All the processors concurrently run the code of a parallel region and test the cells to determine
the threads to be executed. The compiler uses autoscheduling techniques inspired from [6) and
generates code that provides autoscheduling of the processors without any system call.
The outlines of the main pieces of code are:

code run by the main processor :

call INITNMJTI(nb~cell .nb.proc)
C Initialization of the cells associated to the loops of the region
C with the UFLOCK operation

C End of initialization
call NULTIREGIONregion...)

where

subroutine INITNULTI (nb..cell .nb..proc)
C nb..proc is the number of processor offered by the machine
99 if (GET(nextaulti .neq. 0) goto 99

UNLOCK (nextmulti .nb..proc-1)
C nextaulti : when the value of this cell is 0, its means that all the
C auxilliary processors are ready for the execution of the
C next multiregion.

UNLOCK(endnulti ,nb-proc)
C endaulti : when the value of this cell is 1. its means that all the
C sauxiflisxy processora have finished the execution of the
C current multiregion.

end INITWULTI

subroutine NULTIREGION(region,..)
C storage of the parameters in exchange zone (tagged cells)

C End of the storage
UNLOCK(multi .@region)
call mtulti

99 if (GET(andmuati) .neq. 1) goto 99
LOCK(aulti)
n a LOC(endulti)
UNLOCK(ndulti .n-i)

end NULTZhRION

code concurrently run by all the processors:
subroutine region( ... )

C stop is a cell, the value of which becomes equal to 1
C when all the threads have been selected

9999

-- PARATLLEL and SEQUENTIAL loops
if(G*T(stop).lG.0) goto 9999
end region
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code run by the auxilliary processors:
This code is written in SPARC assembly language ; a Fortran-like version is:

999 addr-GET(alti)
... --- initiali ation of the private context

--- from dedicated calls
call *addr
na-.K(endulti)
call ULOC(ndulti,n-1)

99 if (GET(endsulti) .neq. 0) goto 99
n=LOCK(nextnultti)
ULOC(nox eulti.n-1)
goto 999

2.5.3 Algorithms to generate synchronization between the loops of a region

One must keep in mind that :

a the code between C$PARLLEL REGION and C$END PAALLEL REGIOI will be run concurrently
by the different processors allocated to the Fortran program,

a a SEQUENTIAL DO loop is associated one thread,

* a PARALLEL DO loop is split into several threads ; this number of threads is not bounded
by the number of processors allocated to the Fortran program ; the threads of a PARALLEL
DO loop are independent of each other,

a the whole synchronization is realized via access to cells and without any system call.

Region with only SEQUENTIAL DO loops

Let us consider the previous example where the PARALLEL DO loops are considered as SEQUEN-
TIAL DO loops:

CSPARALLEL REGION

C$SEQUNTIAL DO 1

C$SEQUEITIAL DO 2 AFTER DO 1

CSsEQUUNTIAL DO 3 AFT1" DO 2

C¢SEQUENTILL DO 4 AER DO 4

C$SND PARALLEL REGION

The compiler transforms the region following the hereafter algorithm:
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" A cell is associated with each DO loop 2 .
" If a loop is independent, its cell is initialized to 1.
" If the loop DO n depends on p other DO loops, the cell associated to DO n is initialized to

1 -p.
" There is an extra cell called stop which is initialized to a value equal to minus the number

of leaf-loops plus one. This cell is decremented every time a leaf-loop completes.
* When a loop completes, the cells of the loops depending on that loop are incremented by 1

via a multithreading operation SIGCHORE(cell).
" When the value of a cell becomes equal to 1, the associated loop becomes eligible.
" When a loop is selected, its cell is reset to 0.
" The test of the eligibility and the loop selection is done via a multithreading operation
ISREADY(cll).

All the processors allocated to the task (i.e. the Fortran program) try concurrently to execute the
threads (i.e the eligible DO loops). When stop becomes equal to 1, all the processors but one
become idle waiting for the next region to be concurrently executed.

For example, the loop DO 3 will be changed into

C$SEQUURTIAL DO 32
it (ISRiADY(3) .gt. 0) then

do 32 i=l.n

32 continue
call SIGCUHOU(4)

endif

The multithreading operations are written in SPARC assembly language and inlined. Their mean-
ing - in Fortran - is :

function ISREAD(cll)
integer isready
isready- LOCK(cell)
if (isready .gt. 0) then

call UNLOCK(cell. isready-1)

else
call UNLOCK(cell. ioready)

endif
return isready

end

and

subroutine SIGCHORE(cell)

integer status

status-LOCK(cell)

21n all the examples, the cell p is associated to the "do p" loop.
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call UWILOCK(cell,status+i)
end

Region with only a PARALLEL DO loop

A PARALLEL DO loop is split into several threads to be concurrently executed by processors
allocated to the task. There are different strategies to fix the number of threads and the scheduling
of the iterations between the threads.
If the loop is a genuine parallel loop, there are two strategies to fix the number of threads:

a If one knows that the computing time is approximately the same for each iteration of the
loop (e.g. a loop with no conditional instruction), then the number of threads p will be set to
the number of processors allocated to the task and each thread will execute n/p iterations.

s If one knows that the computing time varies significantly between the n iterations, a better
balance of the work between the processors executing the threads will be obtained if there
are more threads executing less iterations.

In both cases, each thread executes a chunk of consecutive iterations (the size of a chunk depends
on the number of iterations and on the number of threads executing concurrently the loop).

The genuine parallel ' 3 oecomes:

CSPIRALI.LEL DO I
status=- ;BAWMD(1)
it (status .gt. 0) then

*Y irstfI+chunk* (status-i)
aylasta in(zyfirst+chuuk-1,n)
do 1 iuayfirst.uylast

1 continue
endif

Remark :
In some cases, the number of threads is imposed by dependences between iterations. For example,
if we change the instruction of the loop DO 2 into:

zxi) y(i)+z(:)+x(i-3)

then this loop is parallelizable if and only if 3 threads execute one iteration every 3 ones.
So the Parallelizer will indicates :

C$ PARALLEL DO 2 AFTER DO 1 - THREADn3

This number of threads imposed by dependences between iterations is not limited by the number
of available processors.

We will call this kind of loop pseudo parallel loop because the iterations are not independent and
the parallelism is obtained via an artefact.
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A pseudo parallel loop must be split into p threads and each thread executes one iteration every p
iterations.
The pseudo parallel loop becomes:

C$PAflALLEL DO 2 -THREAD=p
statusISRADY(2)
it (status .gt. 0) then

do 1 i-status.n~p

I odfcontinue

endif

Region with SEQUENTIAL and PARALLEL DO loops

The algorithm for transforming such a region is a generalization of the former algorithm used for
regions with only SEQUENTIAL DO loops:

" A cell is associated with each DO loop.
" If a loop is independent, its cell is initialized to the number of its associated threads.
" If the loop Do n depends on p other threads, the cell associated to DO n1 is initialized to

1 -p.

" There is an extra cell called stop which is initialized to a value equal to minus the number
of leaf-threads plus one. That cell is decremented every time a leaf-thread completes.

" When a thread completes, the cells of the loops depending on that thread are incremented

by 1.
C When a loop becomes eligible, if that loop is a PARALLEL loop then its cell is set to the

number of threads into which the loop is split and if it is a SEQUENTIAL loop it is set to 1.

" Each time a loop is selected, its cell is decremented by 1 and a thread is executed.

This implies the introduction of an other multithreading operation : to this effect we add an
optional parameter to SIGCHORE(cll) with default value 1 ; this represents the number of threads
associated to the loop when it becomes eligible. Its semantics are:

subroutine SIGCHORE(cll .value)
integer status

otatus=LOCK(cell)
if (status At. 0) then

call UNLOCK~cell ,utatus.I)
else

call UNLOCuecellvalue)
endif

end

Note that when value = 1, SIGCHORE(cell * I) has the same meaning as the previously given
semantics for SIGCHORE(cll), because istatus can never bcome strictly positive.
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A Comprehensive Example

Let the result of the Parallelizer be:

C*PARALLEL REGION

CiPAR.ALLEL DO 1

CSPARALLEL DO 2 AFTER DO 1 - THREADS - 3

C$SE JtUIAL DO 31 AFTER DO 2

C$SEQUETIAL DO 32 AFTER DO 1

CSEQUUTIAL DO 33 AFTER DO 31, DO 32

C$PARALLEL DO 4 AFTER DO 31

CSEND PARALLEL REGION

Each SEQUENTIAL DO loop will have one thread.
The loop DO 2 will be split into 3 threads.
The loops DO I and DO 4 will be split into 4 threads.
The whole region will become:

C$PARALLEL REGION
call UNLOCX(.4)
call UNWCK(2,-3)
call UNLOCK(31 .- 2)
call UNULCK(32.-3)
call ULOC(33,-1)

call UNLOCK(4.0)
call UNLOCK(stop. -4)
call IN (rtion .... )

CSEND PARALLEL REGION

subroutine region(....)

CSLOCAL i, status, irst, sylast, chunk

chun-(n-l)/4 + 1
9999 continue
C$PARALLEL DO 1

statusISPYADT(1)
it (status .gt. 0) then

zyfIxst-1fchunka(status-1)
sylaat-min(nay irstfchunk-1)
do 1 I. aytirst,sylamt

I continue

call SIGCiORE(2.3)
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call SIGCHORE(32)
endif

CPIRAIEL DO 2 AFTER DO I - THREAD-3
etatus-ISREADY (2)
if (status .gt. 0) then

do 2 i-statusn,3

2 continue
call SICHORE(31)

endif
CSEQUEITIUL DO 31 AFTER DO 2

if (ISREADY(31) .gt. 0) then
do 31 i-l,n

31 continue
call SIGCHOPRE(4,4)

call SIOCHORE(33)
endif

CSSEMUEITIAL DO 32 AFTER DO 1
if (ISREADY(32) .gt. 0) then

do 32 i-l,n

32 continue
call SIGCHORE(33)

udit
C$SEQU]rIAL DO 33 AFTER DO 31, DO 32

if (ISREADY(33) .gt. 0) then
do 33 i.l,n

33 continue
call SIOCHORE(stop)

endil
CMRALLEL DO 4 AFTER DO 31

status-ISREADY(4)
if (status .gt. 0) then

WyfirstI+chunke (status- 1)
aylest-nin(nyfirst+chunk-1)
do 4 i- myfirst~mylast

4 continue
call SIGCHORE(stop)

endif
if (GET(stop) .le. 0) goto 9999
end

3 Conclusion

We have completed a prototype version of the parallel compiler where the multithreading is im-
plemented via lightweight processes on a SUN 4. This version allows us to check the results of the
paralleJizer and of the compiler.

During the second quarter of 1990, a MultiSparc EWS prototype will be available to evaluate our
multithreading mechanisms on actual hardware.

We also plan to extend our multithreading mechanisms to the parallelism defined in PCF Fortran
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and to design a parallelizer that takes as input Fortran 77 programs and produces PCF Fortran
programs.
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Abstract

In this paper some of the key issues are described for the imple-
mentation of efficient sparse computational codes on supercomputers.
Whereas dense computations run mostly near the peak performance of
new architectures, for sparse computations this is certainly not true.
Sparse matrix computations are characterised by the relative small
number of operations per data element and the irregularity of the com-
putation. Both facts may significantly increase the overhead time due
to memory traffic. Further the development of sparse code is far from
trivial. The use of sophisticated data structures together with complex
control flow makes designing sparse codes an almost unmanageable
task.

1 Introduction

A major difficulty associated with sparse matrix computations is that the
relation hardware-algorithm Is complex because of the random nature of
the computations. Sparse matrix computations are characterized by several
features: (I) complex data handling, (ii) irregular data streams, (UII) indirect
addressing, and (iv) a low ratio of arithmetic operations to data element
references. The first feature is caused by the fact that sparse matrices are
stored in a condensed format in order to minimize the storage requirements,

*This work was supported in part by the National Science Foundation under Grant
No. US NSF CCR-T717942, and the US Department of Energy under Grant No. US DOE
DE-FG02-45ER25001.
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which leads to substantial overhead. The second leads to lower effective
memory bandwidth, the third complicates vectoriation and parallelisation
of the sparse matrix codes, and the fourth can lead to excessive data move-
ment and loss of data locality.

As a result the performance of sparse matrix computations is dictated by
the ability of a specific architecture to support high and irregular data traffic
between computational elements and memory. In fact the common assump-
tion that long-running numerical application software is CPU-limited [11]
is questionable. Super/Parallel Computers today are very subtly tuned for
matching the computational cycle with memory access cycle. This results
in very good performance of regular computations in which not too many
data streams from and to memory are involved. It seems likely that this
trend will continue with future systems becoming even more dependent on
regular data transfers. It appears that computational kernels in which there

are at most three regular data streams involved, can be exploited fairly well
by most of the currently marketed supercomputers. However, in some cases,
one can detect a significant decrease In performance when there are three or
more data streams Instead of Just two data streams per operation [14].

Not only Is the performance of architectures stressed by sparse matrix
computations; they also constitute a major problem for restructuring com-
pilers and program environments. As a major part of loop structures in
sparse codes employ Indirect addressing (subscripted subscripts), data de-
pendencies can mostly not be determined at compile time. The only known
restructuring techniques are based on an at runtime evaluation of the in-
direction arrays [13,16]. The evaluation of these indirection arrays is too
costly, however, if the number of operations performed on the array ele-
ments is small. For a detailed account for the performance tradeoff of these
techniques see [13]. For some Instances of sparse codes the overhead due to
runtime evaluation of the indirection arrays can be nullified. This is in par-
ticular true for iterative methods for solving linear systems of equations. As
these methods involve a series of matrix-vector multiplies (and possibly tri-
angular solves) where the sparsity structure of the matrix does not change
from one Iteration to the other, the evaluation has only to be performed
once.

The development of scientific libraries for efficient sparse matrix com-
putations codes Is a major effort. This Is not only due to the fact that the
various different architectures require very different techniques in order to be
utilized efficiently, but also most existing sparse matrix computation codes
cannot be viewed as consisting out of a number of higher level computational
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primitives. After all the components of a sparse matrix computation code
interact strongly with each other. For instance, in a direct solver for systems
of linear equations, the handling of fill-in determines the storage format of
the matrix which directly influences the reordering used in the code, and
the choice of a pivoting strategy influences both the fill-in handling as the
reordering. This directly Implies that, if higher level primitives can be Iden-
tified, these primitives need to be implemented in various ways in order to
be utilized in different code instances.

Another major problem formed by sparse computations is the complex-
ity of code development. This is mainly caused by the fact that the use of
complicated condensed formats for storing the sparse matrices forces the pro-
grammer to implement explicitly garbage collection routines to free space,
and routines to reformat data structures. Secondly, the exploitation of paral-
lelisatlon and vectorization involves often sophisticated preprocessing code.
To illustrate this, In the following table we counted for two sparse Fortran
codes the total number of lines of code and the number of lines in the code
in which floating point operations are performed.

11 # of actual lines # lines with fi. point operations J

M&28 1826 28
McSparse [ 4947 30

Ma28 is a commonly used package for solving general sparse systems of linear
equations developed at Harwell (2]. McSparse is a package for solving these
systems which exploits different levels of parallelism and hierarchical mem-
ory systems (7,191. As can been from this table the number of lines which
contain floating point instructions is negligible. This does not directly imply
that the amount of time spend performing these floating points Instructions
is negligible. However, it shows that most of the effort of developing these
code Is spend in the non-computational part of the code.

The above described difficulties are less of an issue for structured sparse
computations. Structured sparse matrices arise mainly from the numerical
handling of partial differential equations by either finite element or finite
differences techniques. These matrices differ from general sparse matrices in
the sense that mostly a diagonal storage scheme can be used, which can be
exploited to obtain longer vector operations. Also irregular data streams do
not occur as frequently as for general sparse matrices which alleviates the
constraints on the effective memory bandwidth. Further, complex data ma-
nipulations are not needed. Because of this, the reminder of the paper deals
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mainly with unstructured sparse computations. In the next two sections
some specific solutions for the implementation of direct methods and Itera-
tive methods are described for solving general sparse systems of equations
on parallel/super computers.

2 Direct Solvers for Sparse Linear Systems

Implementations of direct solvers for general sparse matrices on vector and
parallel architectures mostly perform very poorly. This is mainly caused by
the fact that the exploitation of parallelism and vectorisation in such codes
is strongly dependent on the sparsity structure of the matrix A. In the case
that the sparsity pattern of the matrix A is arbitrary, it is almost impossible
to exploit any paralleiism/vectorization a priori. There are essentially three
different techniques for generating parallelism in direct solvers for general
linear systems of equations. The first technique exploits parallelism at the
level of the rank-i update. Secondly multiple rank-1 updates can be per-
formed in parallel. This mostly requires a search for a set of diagonal or
triangular pivots. Thirdly a global ordering (tearing technique) can be used
to decompose the sparse matrix into blocks which can be factored In parallel.

Another technique, which is recently being used to obtain efficient im-
plementations of these codes, is based on identifying sub-systems which are
sufficiently small and have a reasonable amount of fill-in. These sub-systems
can be treated as dense matrices and dense factorizations can be used which
are mostly much more efficient than sparse factorizations. A good example
of this development Is given by the mtdtifrontal code [4]. In this code frontal
matrices are assembled by examining the elimination tree. However, the ef-
ficiency of the multifrontal approach is degraded if the pattern of the sparse
matrix is far from symmetric.

Although tearing techniques are mostly considered for introducing large
grain parallelism in a sparse solver, they also identify subsystems in which
the amount of fill-in is reasonable large. Because tearing techniques bring
a sparse systems into bordered upper triangular block form, fill-in will be
concentrated to the diagonal blocks and the border. This is in particular true
for the "coupling block", which in most cases will get near dense during the
factorization. In the remainder of this section a direct solver, McSparse, is
being discussed which is currently being developed at CSRD. The underlying
idea for developing this solver was to obtain a sparse code which would
exploit different levels of parallelism. As new architectures are getting more
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Hybrid

Figure 1: The ordering IH*

and more hierarchically structured it will become very important in the near
future to device codes which allow more than out form of parallelism to be
utilized. The Cedar architecture [10) was mainly used to develop a first

version of MeSparse. Currently the code is being ported onto a Cray 2 and
a Cray YMP.

MeSparse is based on finding large grain parallelism such that the fac-
torization of a general spares matrix A can be divided up Into partitions
which allow the clusters or processors to work in parallel on the problem.
(On Cedar, finer granularity parallelism can be exploited within a cluster.)
Large grain paralllsm Is obtained by orderin the matrix by a hybrid order-
Ing Rs which Is related to tearing techniques for nonsymmetric matrices [5].

Tearing techniques, however, are based mostly on nonsymmetric orderings
(column and row interchanges). The He algorithm differs in that it uses
an initial nonsymmetri€ ordering (H0) and subsequent symmetric orderings
to acehieve the deired form. The H* ordering produces a bordered block
upper-triangular form. The ordering is a hybrid form combining Thijon's al-
govithm [17], the H1 ordering which is derived from Tarjan's a.gorith, and
the H2 ordering which is based on a modified form of Nested Dissectio [8)
that exploits the nonsymmetric structure of the matrix. Additionally, He
tries to enhance the stability of the pivoting strategies wsed in the factor-
ization algorithm. This is accomplished via three techniques. First, the HO
phase generates a transversal such that the element on the diagonal for each
column is within a bound of the largest element within the column. In the
H1 and 92 phases, two techniques are used which monitor the size of the
elements placed in the border. In figare I a sparse matrix (bp_800 from the
Harwell/Boeing collection [3]) is depicted before and after being reordered
by H *.

The factorization and solution of the partitioned system can exploit the

253

and.ore.ierachiallystruture itiillbecoe vey Iportntdi thenea



above ordering in several ways. These include modifications to: a stan-
dard sparse LU decomposition, a block LU decomposition, a decomposition
combined with a low rank update such as the Woodbury formula [9J, and
Iterative methods which may use the decomposition as a preconditioner.
For the moment only attention is paid to the modifications of the standard
sparse LU decomposition to exploit the form effectively and generate an
accurate solution.

The implementation of the solver first performs the H* ordering on a sin-
gle cluster and then distributes the matrix to the other clusters and places
certain portions of the border in the global memory to be shared by the
clusters. The clusters then compute the LU decomposition of each diago-
nal block. This factorisation can be done using dense techniques suitable
for the cluster's architecture (BLAS3-based partial pivoting) or a parallel
sparse factorization routine which exploits finer grain parallelism. Of course,
the diagonal blocks which result from H* may not be nonsingular or well-
conditioned. This Is handled by either artificially forcing nonsingularity or
by dynamically redefining the border during the factorizatlon. In the latter
technique the unknowns which cause difficulty are cast into the border and
eliminated at a later stage. After these factorizations are completed the
off-diagonal entries In the upper triangular part of the matrix are updated.
The entries in the border are then updated. This update may exploit the
hierarchical structure of the border depending upon Its sie. Finally, the
diagonal block coupling the border elements is factored. This Is typically
dense but may be performed on a single cluster or multiple clusters depend-
ing on its site. The forward solve is partitioned naturally as a result of the
factorisatlon. However, during the factorization phase the U matrix is redis-
tributed to allow an efficient backward solve (which may be done repeatedly
if coupled with an Iterative method).

3 Sparse Basic Linear Algebra Subroutines for
Iterative Methods

As was already mentioned in the introduction, identifying computational
primitives for sparse codes might not always be possible, however, for it-
erative methods these primitives are easy to identify. Recently many pa-
pers appeared which describe efficient implementations for triangular solves
and matrix-vector multiplies [1,6,15]. In this section a systematic way is
described how to obtain efficient implementations for these computational
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kernels on a vector/concurrent architecture.
Sparse computations are characterized by the intrinsic complexity of the

data handling. In order to cope with the complexity of data handling, the
design of sparse BLAS primitives should encompass both the data manipu-
lation capabilities of the architecture as well as the requirements imposed by
the sparse computition. This is achieved by essentially taking the following
four steps:

" Defining the suitable Data Access Types

" Handling Data Locality

" Handling the Irregularity of the Computation

* Handling Parallelism.

We will demonstrate this for the Sparse Matrix A times Dense Ma-
trix(or Vector) B primitive (SpMxM(V)). The primitive SpMxM derives,
for instance, from an Iterative method to obtain the eigenvectors of a sparse
matrix. At each iteration the iteration matrix is multiplied with the approx-
imates of the eigenvectors. The primitive SpMxV, which is a special case
of the former one, is the crucial component with respect to performance in
most Iterative solvers.

In vector/concurrent architectures, e.g. CEDAR, Alliant FX series, Cray
series, there are essentially two different types of data access: vector access
and scalar access. For the primitive SpMxM we can think of two possible
ways of realizing these vector accesses. One realization Is based upon the
row/columns of matrix A and/or B, and the other realisation is obtained
by extending each row (column) of A to a full row (column) by shifting all
the non-sero entries of A to the top (to the right). The latter extended
rows (columns) are also called jagged diagonals, generalized columns and
stripes, see [6,12,14]. A represents the sparse matrix and B the dense matrix
throughout this section. The following table depicts which combinations of
these accesses makes sense for the implementation of SpMxM:

A scalar jrow column jext. row ext. column

scalar X X
ro-w X

counX X
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The scalar-A/scalar-B version is certainly implementable but does not ex-
ploit the vector capabilities of the architecture under investigation. This
leaves us with four different types of implementation for SpMxM.

For multiprocessors with an hierarchical structured memory system care
has to be taken with respect to data locality. By this we the ability to keep
data In the highest level of a system, e.g., vector registers or cache, for as
long as possible during a computation. The data locality of a computation
is largely determined by the time delay between re-usage of data. The
following strategy is used to optimize data handling in these architectures.

1. Vector Register utilization: reduction of the number of data streams
to be accessed by each CE.

2. Cache utilization: reduction of the length of the data-streams.

The reduction of the number of data streams is obtained by keeping each
operand as long as possible in a vector register during the computations. For
each of the above mentioned four versions this amounts into two variants.
For instance, for the scalar-A/row-B version, either, each row of A can be
kept in a vector register for as long as possible, or each row of the result
matrix. The number of data streams can be even further decreased by
applying a blocking technique. By blocking we mean that the innermost
loop of a nested loop is not iterated for a maximal number of times, but
only in chunks of a certain length. The following table shows the reduction
of the number of datastreams for each of the eight versions.

Version 1 A 1B 2A I2B I3A.I 3B 4A 4B
# Datastreams 11 1 1 1 1
Origin a y 3 3 ,131[4L4 5 5
Before Blocking 2 2 1 13-* 2 14* 3 3*
After Blocking * 1* 1* 1* 2* 2* 1* 1"

The entries in this table which are suffixed by a * indicate a non-optimal
reduction of the data streams caused by the occurrence of indirect address-
ing.

The length of the data streams can be reduced by again applying a
blocking technique. This blocking technique is applied in the same way
as the above mentioned, but Its functionality is quite different. Whereas
both blocking techniques try to decompose a DO-loop in chunks of a certain
length, the first mentioned blocking is constrained to the vector processing
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capabilities of an arch'tecture. In order to distinguish the two forms of
blocking we call the latter one vertical blocking.

The use of condensed storage formats for the sparse matrix can have
different impacts on the 8 Implementations. First Indirect addressing can
be caused In the innermost loop body. Secondly the loop boundaries can
become dependent on the structure of the matrix, and, thirdly, the length
of the vector operations may be affected. If we summarize all the effects
of using a condensed storage format for the sparse matrix, we obtain the
following table:

Version 1A IBI2AI 2B I3A 3B 4A 4B
Effect 1 __1...

Ind. Addr. X X X X X X

Inner Lp. Bnd. X X X
Outer Lp. Bnd. X
Vector Length X X X X

For a more detailed account of these issues, and, specifically, the ban-
dling of parallelisation and experimental data on the Implementation of the
primitives SpMxM(V) the reader Is referred to [18].

Concluding we can say that sparse BLAS implementations can speed
up the performance of sparse computations considerably. So, in the case of
the Alliant FX/8 (FX/80), on which the performance of unstructured sparse
computations lies within the range of 0.1-10 Mflops, specialized higher order
BLAS routines can speedup this performance to 5-30 (8-50) Mflops.
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Abstract 1. Introduction

Modem supercomputers like CRAY X-MP and CRAY The CRAY X-MP and CRAY Y-MP are multiprocessor
Y-MP achieve their high computing speed by using both systems with a shared memory. A short introduction into
vector and parallel hardware. This paper gives a short in- the system architecture is given in section 2. On these
troduction into the CRAY Y-MP system architecture and vector-supercomputers, parallelism on the programming
describes the multitasking concepts which can be used on language level is handled by three modes of multitasking.
this machine. There are three different concepts which Macrotasking supports parallelism on the subroutine level
support parallelism on the programming language level: ([7,13,18]). Task creation, synchronization, and commu-
macrotasking, microtasking, and autotasking. Macrotask-
ing supports coarse-gram parallelism on the level of sub- nication are specified explicitly by the programmer using

routines. With microtasking, fine-grain parallelism can be subroutine calls. Macrotasking exploits the intrinsic
used even on the level of DO loops. In contrast to these parallelism of a problem by partitioning the computations
concepts where the multitasking primitives have to be in- into N tasks which are simultaneously executed on N
troduced by hand, the new autotasking concept offers an processors. Inefficiencies arise when the tasks are not well
automatic way for finding parallelism in existing balanced or synchronization is needed to often ([4]).
FORTRAN programs. The concepts and implementa- The second strategy is called microtasking and works on
tions are discussed, and measurements of the overhead as the statement level (Q7,12]). It makes use of compiler di-
well as performance results for kernels and an application rectives inserted by the programmer. These directives are
program are presented. passed to a preprocessor which generates subroutine calls

Moreover, the overall system performance is of interest for the creation of parallel tasks and their synchronization.
when multitasking concepts are used. Therefore, a pro- In contrast to macrotasking, the program parallelism is
gramming system is developed, generating synthetic user dynamically mapped to the number of CPUs available at
programs which simulate a given work load in a flexible run time.
way. The resulting benchmark environment is used to in- The third strategy, which has been implemented recently,
sert additional sequential as well as parallel programs. This is called autotasking ([1,10,17,23]). It is based on im-
technique guarantees constant system load and enables proved dependency analysis techniques which provide an
reasonable comparisons. First results obtained from these automatic mechanism for detecting parallel regions of code
investigations have proved the efficiency especially for the (normally DO loops) without user intervention. To in-
fine-grain concepts which provide good performance in prove the performance, this process may be supported by
dedicated as well as batch oriented multiprogramming en- additional informational preprocessor directives specified
vironments; for selected production codes on the CRAY by the programmer. In comparison with microtasking
Y-MP these concepts are now used to evaluate their effects functionality is improved. The parallel primitives are
on a loaded system. slightly changed, whereas the synchronization techniques

used have been proved to be efficient also in the micro-
KeywordL CRAY Y-MP, multitasking, macrousking, tasking implementation. In contrast to microtasking,
microtaaking, awotsking, parallel programming, linear al- autotasking supports the flexible definition of parallel re-
gebra kernels, benchmark environment, hardware per- gions at any place in a subroutine, for each of the parallel
formance monitor. regions the data scope i analyzed and can be defined ex-
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plicitly. These multitasking concepts available on CRAY
machines are described in detail in section 3.

An evaluation of multitasking concepts should also take
into account runtime measurements. There are several
ways to assess the efficiency of multitasking implementa- . Overail 

tions (see also Fig. 1): Svsteni

1) Overhead measurements of multitasking primitives: Performance
The execution of multitasking primitives causes over-
head due to the runtime used by the primitives itself.
Section 3 provides a set of overhead timings for the
main multitasking primitives. Application Programs

2) Performance measurements of program kernels: Fig. I. Evaluation of multitasking concepts with re-
In order to explore the strength of the multitasking spect to four areas
implementations for kernels often used in scientific
programs, parallel algorithms for linear algebra prob- tations. The processors have a cycle time of 6 nsec. The
lems ([12,21]) have been implemented and extensively main memory consists of up to 64 megawords and is re-
studied on the CRAY multiprocessor systems. A alized in ECL technology providing an access time of
short summary of the results can be found in 30 nsec. Compared with CRAY X-MP, the memory or-
section 4. ganization has been significantly improved; a description

3) Performance measurements of application programs: of the differences can be found in ([8]). The detailed sys-3)SPerfiomnce masrements of application pro : tem characteristics of the two CRAY multiprocessor sys-
Section 5 presents results for a large application pro-

gram implemented on the CRAY systems using mul- tems installed at KFA are presented in Tab. 1.

tiple CPUs. Moreover, this section describes program
modifications which are useful to improve load bal- CRAY CRAY
ancing and to exploit the total parallelism. X-MP/416 Y-MP8/832

4) Measurements of the overall system performance: number of CPUs 4 8
To analyze efficiency of multitasking concepts with
respect to the total computer system, benchmark CPU cycle time 8.5 nsec 6 nsec
programs are used to generate a well-defined work number of functional
load. The generation and selection of such benchmark units per CPU 13 13
programs is fundamental for the performance evalu- 16 MW 32 MW
ation. Section 6 describes a program system devel- main memory (organized in (organized in
oped by the author which generates benchmark pro- 64 banks) 256 banks)
grams capable to simulate any given user load in a
flexible way. This system is used on a CRAY multi- memoy access time 34 nsec 30 nsec
processor system to assess the efficiency of the multi- Solid-state
tasking concepts with respect to both user programs Storage Device 32 MW 128 MW
and operating system activities. (SSD)

Tab. I. System characteristics of the CRAY multi-
2. The CRA Y Y-MP Multiprocessor System processors installed at KFA

The CRAY Y-MP is a shared memory multiprocessor The CPUs of one CRAY Y-MP system are tightly coupled
system with up to 8 processors, and it is the successor via the shared main memory and 9 identical groups of
system of the CRAY X-MP. A description of the CRAY registers, called clusters, containing 8 shared address regis-
X-MP system can be found in [12]; as far as the logical ters (SB), 8 shared scalar registers (ST), and 32 binary
structure is concerned both CPU types are identical. Each semaphore registers (SM) each. These registers can be ac-
CRAY Y-MP CPU is a high-speed vector processor with cessed by all processors; depending on program require-
specialized pipelined functional units which can be utilized ments either one cluster or multiple clusters, or eventually
in parallel to perform high-speed (floating point) compu- no cluster will be attached to a CPU. These hardware
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features provide the basis for high-speed communication macrotasking, the application has to be partitioned into a
between parallel tasks when multitasking is used. fixed number of tasks; the user has to create the tasks ex-

plicitly by subprogram calls. Task management is done

by the library scheduler. The library scheduler gets infor-
3. Multitasking Strategies mation about synchronization and communication re-

quirements via the subprogram calls. It controls special
The multitasking concepts provided by CRAY Research queues and initiates the necessary activities. The job
Inc. support the exploitation of parallelism on different scheduler attaches the tasks to physically available CPUs
programming levels. They are realized by means of sub- ([7,13]). These tasks can be executed correctly in parallel,
program libraries, which are linked together into the library if there are no prohibitive mutual dependencies concerning
UTLIB, and they allow the execution of one program in synchronization and sequencing.
parallel using tasks. In multitasking terminology, a task is
a synonym for a user library task. User library tasks are The macrotasking library consists of four different parts,
generated by calls to the multitasking library subroutines, which can be characterized by different functions of the
Each multitasking program is handled by the library imbedded routines:
scheduler which belongs to the multitasking library. The
library scheduler is the interface between the multitasking I) Routines to manipulate tasks:
program and the operating system. It handles the user li-
brar tasks and connects them to exchange packages. * TSKSTART(tskarray,name[,list])
Afterwards, the job scheduler will find all necessary infor- generates a new task with identification tskarray

mation in the exchange package in order to attach a phys- for subroutine name and passes the parameters
ical CPU to the task. of list to the subroutine.

* TSKWAIT(tskarray)
For a program which does not use multitasking at all, the waits for the end of the task identified by
master task is executed. Within a program which uses tskarrav.
multitasking, the master task will create further tasks by
calling library subprograms. These new tasks are executed 2) Routines to control eventsi:
in parallel with the master task. * EVASGN(name,value]l)

A subprogram may be called by more than one task si- declares the INTEGER variable name as event
multaneously. Thus, it is necessary to guarantee that each variable.
task can access local variables without conflicts. Therefore, * EVWAIT(name)
all local variables of the subprogram must be stored within waits for the event name.
the local memory area of each task (stack); the cft77 com- 0 EVPOST(name)
piler enables this feature. Subprograms compiled with this signals the event name to the scheduler.
option are called reentrant.
If a non-reentrant subprogram is to be executed by multi- 3) Routines to control barriers 2:
pIe tasks in parallel, for each task a copy of this subpro-
gram with a different name must be used, or the subpro- * BARASGN(name[,value])
gram called must be imbedded into a critical region. In declares the INTEGER variable name as barrier

order to guarantee correct results when manipulating vai- variable, value specifies the number of tasks

ables and data elements within a critical region, this region which have to synchronize.

must not be entered by more than oihe task at a time. * BARSYNC(name)
signals to the scheduler that this task has arrived
at the barrier specified with name.

3.1. The Macrotasking Concept 4) Routines to cortrol critical regions:

Macrotasking is the kind of multitasking where parallelism * LOCKASGN(name[.value])
is realized at subprogram level. Within a program subpro- declares the INTEGER variable name as lock
grams may be executed as different tasks. In order to use variable.

I E% ents can be used to force a certain order of execution between tasks.
2 Barriers are used to assure that all tasks have reached a particular program location.
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* LOCKON(name) ors of a CRAY Y-MP machine, for instance, when
signals to the scheduler that this task will enter microtasking is used.
the critical region connected to the variable Instead of using a scheduler all communication and syn-
name. chronization is done by accessing shared registers directly

* LOCKOFF(name) ([7,14]). The overhead of the communication via registers
signals to the scheduler that this task leaves the is much smaller than the overhead to access corresponding
critical region connected to the variable name. variables in main memory as realized within the macro-

tasking library routines.
Multitasking primitive timings as measured on CRAY

Y-MP can be found in Tab. 2 at the end of section 3. The microtasking features are provided by preprocessor
For the generation and termination of tasks some addi- directives ([7,14]). These directives are coded into the user
tional work is needed to allocate storage locations. The program; this leads to multitasking programs which are
basic overhead for generating a new task via a easier to understand than in the macrotasking version. The
TSKSTART call is about 62 microseconds. The syn- usage of directives does not affect the portability of pro-
chronization of the data access to global variables (i.e. for grams. Because the directives must be coded with a 'C' in
reading or updating) can be done using events, locks, and the first column, all FORTRAN compilers will interpret
barriers. The overhead for an event post 3 - event wait is such statements as comment statements.
about 16.1 microseconds, the overhead for a lock set- lock The microtasking strategy is based on the preprocessor
free is about 5.5 microseconds. The generation of lock and PREMULT ([7,14]), which takes the user program as in-
event variables as well as the release of such variables takes put and generates three separate subroutines for each sub-
from 2 to 3 microseconds. For a barrier synchronization routine which is to employ microtasking:
of two tasks about 13.6 microseconds have to be paid, the
assignment of the barrier variable costs about 6.5 micro- 1) Master routine:

seconds, the release of this variable about 3.6 microsec- The master routine is a program coded in assembler

onds. language, which is called by the same name as the
original program. This routine decides whether the

For certain kinds of programs, macrotasking leads to effi- parallel version of a subprogram will be used or not.
cient use of the multiprocessor machine. But often the user 2) SNGL version:
has to deal with three types of problems which may reduce The SNGL version contains FORTRAN program
the speedup achievable by this multitasking strategy: code for the single-task execution of the program.

3) MULT version:
1) For small granularity, the system overhead is too large The MULT version is a modified FORTRAN version

due to the high synchronization frequency involved, of the subprogram to be executed in parallel.
2) Some of the tasks cannot be executed in a balanced

way on the multiple CPUs. Within the MULT version PREMULT translates direc-
3) The numuer of processors does not match the fixed tives into corresponding library calls. There are several

number of tasks specified within the macrotasking directives available to the user; they can be classified ac-
program- cording to their usage:

Several manufacturers of multiple-CPU systems like 1) Demand and return of physical CPUs:
CRAY and IBM are promoting developments in the field
of parallel programming, in particular to reduce synchro- 0 CMICS GETCPUS n
nization overhead within multitasking. Microtasking is an declares the maximum number of CPUs the
approach that allows the efficient use of multiple process- program can use.
ors even for small granularity ([12,18)). * CMICS RELCPUS

returns the required CPUs back to the operating

3.2. The Mcrotaskng Concept system.

2) Definition of control structures:
Microtasking provides parallelization on the statement
level, thus providing a different interface to multitasking. * CMICS DO GLOBAL
Statements, sequences of statements, and complete sub- marks a DO loop to be executed in parallel if
programs may be executed in parallel on multiple process- more than one CPU is availabl.

3 One task is still waiting on the event which is posted.
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* CMICS PROCESS Microtasking has proved high efficiency of the synchroni-
marks the beginning of a program part which zation primitives, but still the user has to introduce
must be executed by one processor. parallelism manually by inserting preprocessor directives.

* CMICS ALSO PROCESS
marks the beginning of a further program part 3.3. The Autotasking Concept
which could be executed in parallel to other
processes. This directive may be used several The main goal of the CRAY autotasking concept is to
times. provide an efficient and automatic mechanism to

* CMIC$ END PROCESS parallelize programs on CRAY multiprocessors (see
marks the end of a PROCESS part. [1,23]). Autotasking integrates the microtasking concept:

* CMIC$ STOP ALL PROCESS most of the communication and synchronization is done
provides a way to stop parallel execution before also by accessing shared semaphore registers directly. Ad-
all computations are finished. ditional tasks execute a Wait-on-Semaphore operation on

a shared register. If there is any parallel work to do, the
3) Safeguarding of critical regions: semaphore is reset, and all tasks are able to execute parts

* CMICS GUARD n of the work. CRAY autotasking will support fine-grain

marks the beginning of the critical region parallelism on all CRAY machines running UNICOS4.

named n. In contrast to microtasking, fine-grain parallelization with
* CMICS END GUARD n autotasking is done by the automatic parallelization of DO

marks the end of the critical region named n. loops. The features are provided by the compiling system

The safeguard directives are also translated within the cf77 which can be partitioned into three parts: fpp, fnw,

SNGL version because exclusive access to variables and cft77. The preprocessor fpp analyzes FORTRAN
subroutines programs; it is able to detect DO loops executable in par-

allel, and it marks these loops with preprocessor directives.
which are called by microtasking tasks. These directives are translated by the fmp preprocessor

Contrary to macrotasking, microtasking parallelism is which is the second part of the cf77 compiling system, and
the cft77 generates machine code for thc modified

specified by the definition of control structures. A Micro- t RA pogram
FORTRAN program.

tasking control structure declares a part of a program
which must be finished before a code part outside of this The autotasking primitives represent a superset of the

region may be executed. Within such a control structure microtasking primitives with several extensions improving
processes are defined. A microtasking process is a sequence functionality. With microtasking, a parallel region has to
of instructions which always is executed as a single task. begin at the top of a subroutine. This has been changed
Microtasking distributes such processes dynamically to the significantly: autotasking supports flexible definition of
actually available CPUs. Program segments outside of parallel regions at any place of a subroutine. The pre-
microtasking control structures are executed by all tasks in processor fnp generates a set of subroutines for each of the
an unpredictable sequence. parallel regions, and all available CPUs will enter at the

beginning of these subroutines. Implicit synchronizationThe dispatch and wait overhead for scheduling a micro- taepacathebto ofheodmrkdyte

tasking subroutine is low and costs about 2.8 microseconds PARALLEL DO, the END CASE, or the DO ALL di-

on a CRAY Y-MP. The overhead of executing a parallel rectives. For each of the parallel regions the data scope of
loop instead of a normal DO loop is 0.450 c C + 2.6 the variables (SHARED or PRIVATE) is analyzed and
microseconds (ci is the number of chunks, each chunk can be defined explicitly.
contains a definite number of loop iterations) which cor-
responds to 75 * ch + 433 CPU cycles. To execute several In comparison with n'icrotasking, only the directives which

PROCESS directives about 1.0 * pd + 2.3 microseconds define multitasking control structures are changed, the di-
(pd is the number of PROCESS directives) must be paid, rectives for CPU handling and safeguarding remain un-
and locking a critical section using the GUARD directives changed. The following list gives a short description of the

causes an overhead of 0.8 microseconds. new autotasking primitives

4 An autotasking version for the COS operating system is being released just now.
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* CMICS PARALLEL CRAY Multitasking Concepts
marks the beginning of a parallel region where multi- Multitasking Macro- Micro- Auto-
pie CPUs may enter. The parallel processes within primitive tasking tasking tasking
these parallel regions have to be marked with PAR- (COS) (COS) (UNICOS)
ALLEL DO or CASE directives. Dispatch- 62 2.8 2.5

* CMICS END PARALLEL Wait
marks the end of a parallel region. Parallel Loop - 0.450"ch O.150*ch

" CMIC$ DO PARALLEL +2.6 + ./
marks a DO loop to be executed in parallel if more Parallel Case - /.O*pd 0.2*pd
than one CPU is available within a parallel region. +2,3 +1.9

" CMICS DO ALL Event 16.1
defines a separate parallel region for the following DO Post-Wait
loop only. In addition, this DO loop is marked to be Lock 5.5 0.8 0.95
executable in parallel by more than one CPU. Set-Free

* CMICS CASE Barrier Syn- 13.6
marks the beginning of a program part which could chronization
be executed in parallel to other processes. The direc-
tive may be used several times. Tab. 2. Overhead caused by multitasking

" CMIC$ END CASE primitives: All times are measured in
marks the end of a CASE part. microseconds on a CRAY Y-MP8/832. chMrks the End ofaCAis the number of chunks, and pd stands for

* CMICS SOFT EXIT the number of process resp. case directives.
provides a way to stop parallel execution before all
computations are finished.

Several directive options like threshold tests, flexible defi- 4. Linear Algebra Kernels
nition of chunk sizes (including the guided self scheduling Using multitasking to take advantage of parallelism within
approach [22]), automatic partitioning of long vector a program gives the chance to speedup special programs
loops etc. have been introduced to optimize execution of appreciably. This is especially true for linear algebra kernels
parallel regions. Furthermore, there are some minor syn- which are heavily used in large application packages.
tax changes. Compared with microtasking under the COS Moreover, multitasking strategies and corresponding
operating system, the synchronization speed is drastically problems can be studied in detail executing such programs.
increased. Instead of calling a function as within micro-
tasking, autotasking uses inline code for synchronization. As matrix multiplication has a simple structure, this algo-
The overhead of executing a parallel loop instead of a rithm is often used to evaluate the different multitasking
normal DO loop (see also [23]) is about 0.150 * ch + 1.1 strategies and to document the potential benefit for such
microseconds on a CRAY Y-MP (ch is the number of easy-to-use algorithms. There exist several algorithms and
chunks) which corresponds to 25 * ch + 183 CPU cycles, implementations for the matrix multiplication; the sub-
A critical section can be locked using the GUARD direc- routine MXV from SCILIB (CRAY subroutine library)
tives leading to 0.95 microseconds overhead, can be used, for example, to perform the matrix-vector

operations (BLAS 2). The usage of microtasking is in-
Autotasking can coexist with macrotasking and micro- troduced by marking the DO loop with a DO GLOBAL
tasking within one program system, but autotasking and directive (see [12]). This program is often used within lit-
microtasking are not allowed to be used together within erature as an example to document the effectiveness of
one subroutine. At the moment, nested parallelism (i.e. microtasking; there, microtasking is used in a natural and
parallel loops inside a parallel loop) is not supported by easy way. Fig. 2 shows the speedup obtained for the li-
autotasking. brary routine MXV using microtasking and autotasking as

well as the macrotasking version of a parallelized MXM
The basic overhead of all multitasking concepts is sum- subroutine from SCILIB (BIAS 3). It can be seen that
marized in Tab. 2. Owing to the actual implementation, for a vector length larger than 128 neither overhead nor
the macrotasking and microtasking measurements are done memory organization problems are of significant influence,
under the COS Rel. 1.17 operating system whereas and the total performance is quite satisfying.
autotasking is measured under UNICOS 5.0.
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Fig. 2. Matrix multiplication using BLAS 2 and Fig. 3. Matrix multiplication using DO loops and
BLAS 3 library routines with multitasking microtasking

range of applications running at our site. Numerical sim-
Within user programs, three nested DO loops are normially ulation is used more and more, for example, to get detailed
used as an algorithm for the matrix multiplication instead information about crystal growth processes. In the
of library routines. This implementation makes it possible Czochralski crystal growth from. electrically conductive
to work with a portable code running on most of the melts, the application of an external magnetic field has be-
available machines, and microtasking can be specified in come a very useful technique for improving crystal quality.
an easy way by marking the outer loop with a The simulation leads to a system of coupled partial differ-
DO GLOBAL directive. J.J. Dongarra has introduced ential equations, i.e. incompressible Navier-Stokes and
the unrolling technique ([9]). for single-task vectorizing convective heat equations, which have to be solved. It
programs, in particular to remove memory conflicts. Us- provides information about the qualitative and quantitative
ing 8-way unrolling the memory-section and bank conflicts difference between the influence of a stationary transverse
([12,20]) are significantly reduced. magnetic field and a vertical magnetic field on the flow and

temperature distribution in the Silicon melt, for instance,Fsg. 3 shows the speedup obtained for both versions of the by means of numerical simulations in a three-dimensional

DO loop algorithm using nicrotasking which documents mematicalnmel of t osi a ro a

the benefit from unrolling in combination with microtask-

als [12)). more detailed description of the simulation program can
ing (s be found in [12,15,19].

In addition to matrix multiplication, some linear algebraalgorithms like LU and Cholesky decomposition heavily This program is used to carry out parameter studies to get
algoiths lie L andChoeskydecmpostio heaily detailed information about the Czochiralski bulk flow. The

used in application programs within scientific and technical detale rion o the Clocrasigl owT
computing environments are studied. Results for these sequential version of the simulation program is highly op-
kernels can be found in Q 12,13]). timized for vectorization, running after some code modifi-cations with a speed of about 195 MFLOPS on one

processor of a CRAY Y-MP. The CPU time needed to
solve one of these problems varies from 10 to 30 CPU

5. Parallel Application Program hours on one processor of a CRAY Y-MP, depending on
material and geometrical parameters and the considered

To get deeper insight into the multitasking implementa- time interval. The simulation program has a simple struc-
tions, the concepts were used to paralleize a numerical ture, and using FLOWTRACE ([6)) it was obvious that
simulation program which seems to be typical for a wide after a short time of initialization more than 99% of the

Time measurements are done by calls to IRTC on a dedicated CRAY Y-MP8/832. The operating system level was
COS 1.17 BF I resp. UNICOS 5.0. The speedup is alculated as the ratio of corresponding times. For kernel meas-
urements always the minimum of three executions i.s taken as the time result to remove the additional work for the first
TSKSTART calls.
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total CPU time is spent in three subroutines. Based on this SUBROUTINE VELO(ID)
information further examinations could focus on these C declarations
subroutines. COMION/NOTASKS/NTSKS

Exploiting parallelism with the macrotasking concept on COMMON/EVENTS /EVENT1

the CRAY X-MP, for each of these subroutines four in- C partition DO loop, starting at 2,

dependent tasks are generated with the TSKSTART C ending at LM1

primitive. These tasks are synchronized with the new I1=2

barrier synchronization primitive introduced with the COS 12=LM1

1.17 operating system. Most of the computational work is ITER=(I2-I1+1)/NTSKS

done in three-fold nested loops: outer I-loop (running from ILAST=( I2-1+1)- ITER*NTSKS

2 to 26), then the K-loop (running from 2 to 34), and the II1=I1+(ID-1)*ITER+MIN(ID-1,ILAST)

inner J-loop (running from 2 to 92). An example of a typ- 112=Il+(ID )*ITER+MIN(ID, ILAST)-1

ical loop nest can be found in Fig. 4. C •
DO 111 I=IIl,II2

DO 111 K=2,NMI
DO 20008 I=2,LMI DO 111 J=2,M
RFTP=RFI(I)*DPHII*SI C . .

DO 151 K=2,NM1 111 CONTINUE

DO 151 J=2,M C . . .

CR(I,J,K)=CR(I,J,K)+SI*DRI* CALL SYNCH(ID,EVENT1,NTSKS)
> (DFF(I,J,K)-DFF(I+1,J,K)) C . .

CF(I,J,K)=CF(I,J,K)+RFTP* END
> (DFF(I,J,K)-DFF(I,J+1,K))

CZ(I,J,K)=CZ(I,J,K)+SI*DZI* Fig. 5. Marotasking version of subroutine VELO
> (DFF(I,J,K)-DFF(I,J,K+1)) running with identifier ID

151 CONTINUE The time6 is measured to check the results for a time in-
20008 CONTINUE terval of the simulation process which represents a typical

Fig. 4. Typical loop nest situation where the flow is stabilized. This time interval
covers a few seconds of the real crystal growth experiment

The cf77 compiler vectorizes only on the i t D and corresponds to one CPU hour of one processor of a

loop. Therefore, efficient vectorization is achieved by run- CRAY X-MP. The results obtained for the macrotasking

ning the longest loop in vector mode. Using macrotasking, version show that the overhead introduced by the addi-
tional library calls is about 40/. With microtasking the

the outer I-loops are partitioned into as many parts as

CPUs are available, and each task takes its own work overhead is reduced to I%. The time measurement for

based on a special identifier associated with this task (see both versions are presented in Tab. 3.

Fig. 5). The sequential (i.e. single-task) reference represents the

The microtasking parallelism is introduced by several wall clock time7 needed by the best single task program

DO GLOBAL directives which specify independent I version simulating 3.4 seconds of the simulation process.

loop iterations. Because of the microtasking concept which The next row provides the time measurement for the

guarantees explicit synchronization of all active tasks at the multitasking versions when four CPUs are used.

bottom of a microtasking control structure (MCS) no ad-
ditional synchronization is needed.

6 Time measurements were done by calls to IRTC on a dedicated CRAY X-MP/416. The operating system level was

COS 1.16 BF 3.
7 Time the user has to wait for the result on a dedicated machine.
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some minor code changes and additional fpp information

am directives. Each of the bars represents one loop nest, on
the x-axis the total time (in seconds) spent within these

- loops and the loop nest number is given, the y-axis gives
the speedup results obtained for each of the loop nests as

sequential reference (one program 2747 s well as for the whole program. Using 4 CPUs a speedup
version running in dedicated mode) of about 3.5 is obtained; this improved result is based on

wall clock time the new memory conflict resolution strategies (see [8]).
(in seconds) T 822 s The overhead of about 1.5% for the parallel version using

U one CPU, compared with the optimal sequential version,
Speedup obtained 3.18 3,34 documents the efficiency of the implementation as far as

autotasking primitives are involved.

Tab. 3. Speedup results on CRAY X-MP/416 with
64 memory banks (COS 1.16 BF 3)

In these experimental results the dominant factor which S C130 / -,6 wft" (3 CM)
limits the speedup achieved in thi application is memory
contention which introduces an additional overhead. Using 94.0 0& l 3 / 03C Ah olask (4 ct)

two CPUs, up to 98 per cent of the theoretical speedup is
gained, with four CPUs only 90 per cent of the theoretical 1
speedup is obtained by microtasking.

With both concepts, macrotasking and microtasking, it was
not possible to get a reliable timing profile for each of the
loop nests in an automatic way. This has changed with the
autotasking concept. There, a parallel region can be iden-
tified with one loop nest, and timings can be inserted to2
measure this nest. The preprocessor PARANAL ([12))
developed by the author was adapted to insert automat- 0 .0.

ically timing routines just around the loop nests. Each
loop nest is numbered, initialization and accumulation of - "  "

the real time spent in these nests is done in FORTRAN time (ioop nes')
arrays without further intervention.

Fig. 6. Original Czochralski bulk flow simulation
For the application program, about 40 loop nests are en- program using up to four CPUs
countered. From the timing information, about 15 loop
nests are considered to be important (more than 0.1% of As can be seen in Fig. 7, increasing the number of CPUs

the total time spent in the loop). Fig. 4 shows a typical does not lead to a linear increase of the speedup. This is
loop nest (nest 21) representing about 28% of the total especially true for code regions with small granularity (i.e.

CPU time even for a short simulation interval, two-fold nested loops No. 20 and No. 39), where the
Autotasking parallelism is introduced by DO ALL direc- communication overhead exceeds the computational work.
tives which specify independent DO loop iterations. These Using 5 CPUs, the whole program can be executed very
directives are inserted automatically by fpp which is part efficiently achieving a speedup of about 4.4, but for higher

of the cf77 compiling system. The autotasking concept number of CPUs the total number of iterations of the I-
guarantees explicit synchronization of all active tasks at the loop (25) which have to be scheduled cannot be distributed

bottom of the DO ALL, and no additional synchroniza- in a load balanced wiy to 7 or even 8 processors. The
tion is needed. To compare the results with the previous granularity of the iterations which have to be scheduled
timings shown in Tab. 3, Fig. 6 shows speedupss using afterwards is rather larg, using 8 CPUs a quarter of the

up to four CPUs of the CRAY Y-MP system, executing real time used within this loop is spent in the last iteration.

an autotasking version of the simulation program with Moreover, loop nest No. 17 is a special case of a search

8 Time measurements were done by calls to the timing routine IRTC on a dedicated CRAY Y-MPS/832 running native

UNICOS 5.0.
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loop where the Outer loop is paralielized. In this case, the Nested parallelism is not supported by the autotasking
search order is slightly changed which leads to a superlinear implementation, therefore other possibilities have to be
speedup for the two- and the three-processor version. On considered. As a consequence, the program was analyzed
the other hand, more than four CPUs do not increase the once again to look for further possible program transfor-
speedup. m.ations. After checking data dependencies, the program

was restructured by hand in the following way:

v CX30 aft 1~Ahssr ) The indices for the outer two loops are stored in the
CL cm ftk- r~s5s~( CtS)! FORTRAN arrays IJINDEX and IKINDEX once

CXoo CM cx J / m t ksrq (11 :Pus) at the beginning of the program (see Fig. 8).

§A00________________
6.504DO 100 I=2,LM1
Mo i DO 100 J=2,M

42 IJLENGTH=IJLENGTH+l
4.00 IJINDEX(IJLENGTH, 1)=I

100IJINDEX( IJLENGTHI, 2) =J
25 100 CONTINUE

1.11 DO 200 I=2,LM1
0. DO 200 K=2,NMI
0. IKLENGTH= IKLENGTH+1

IKINDEX(IKLENGTH,1)=I

IKINDEX(IKLENGTH,2)=K
fire loo lv) 200 CONTINUE

Fig. 7. Original Czodiralskd bulk flow simulation Fig. 8. Additional FORTRAN code to store loop in-
program using up to 8 CPUs dices in a shared arr ay (executed once)

D 'a .2) All three-fold nested loops similarly to loop 21 are

0 translated to two dimensional loops with higher
number 1 . ~~ number of outer loop iterations (see Fig. 9).
Of CPUs s f

ZO 102 CIIC$ DO ALL SHARED(C... ) PRIVATE( ...

______DO 20008 IK=1,IKLENGTH
1_ 25 0 1 1 I=IKINDEX(IK,l)

2 __ 12 1 1.92 1.92 K=IKINDEX(IK,2)

3 8 i 2.77 2.76 RFTP2RFICI)*DPHII*SI

4 6 1 3.57 3.54 DO 151 J=2,lM

S 5 0 5 4.51 CR(I,J,K)=CR(I,J,K)+SI*DRI*

6 4 1 5 4.88 >(DFF(I,J,K)-DFF(I+1,J,K))

7 3 1 6.25 516 CF(IgJ,K)=CF(I,J,K)+RFTP*

a 3 1 6.25 5.93 >(DF'F(I,J,K)-DF(I,J+1,K))
CZ I ,J ,K)=CZ I ,J ,K)+SI*DZI*

Tab. 4. LoW balanceanalysis for original loop 21 (DFF(I,J,K)-DFFCI,JK+1))
151 CONTINUE

Tab. 4 gives a summary about the speedup limits based 20008 CONTINUE
on load balance reasons. The number of iterations which
have to be distributed to the processors is much too small Fig. 9. FORTRAN code for the modified loop nest
to lead to satisfying results for l1rge number of CPUs. No. 21
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3) The search loop (loop 17, see Fig. 10) is treated sim- cm w / * A akj ( CPUS)
ilar to loop 21, and in this case the collected indices
of the J- and the K-loops were used. In addition, the I C30 / v t C ,o A ,o kPk.s)
compiler directive CDIRS SUPPRESS FOUND is f0,* / w;+ &Vo ,i.kk (8 Ms)
used to assure that the shared variable FOUND is not 7.__
held in a register but instead immediately stored into K. I .

the memory.
500', . aId l ] HiH e

CHIC$ PARALLEL SHARED( .. PRIVATE(...) 4.00 1 ,-] L li J I I il I 1 1 1
CMIC$ DO PARALLEL CHUNKSIZE(NPROC)

DO 200 IJ=1,IJLENGTH

I=IJINDEX(IJ,I) 1)o

J=IJINDEX(IJ,2) 1.50 A 3

CDIR$ SUPPRESS FOUND .A

IF(FOUND)GOTO 200 . , , - .
DO 95 K=2,NMI I ;. " ',

95 IF(ABS(DFF(I,J,K)).GE.EPS)GOTO 99 fne (WP r i]e
GOTO 200

99 CONTINUE Fig. II. Modified Czochralski bulk flow compared
FOUND =.TRUE. to the best sequential version

CDIR$ SUPPRESS FOUNDCMIC$ SOFT EXIT also execute different parts of one program in parallel. The
OTO EXT behavior of programs using multitasking within a multi-
GOTO 210 programming environment and the influence of these pro-

grams to the overall work load is of great interest for the
210 CONTINUE rating of multitasking concepts with respect to their effi-
CHIC$ END PARALLEL ciency in practice.

Fig. 10. Modified search loop, implemented with The operating systems COS and LNICOS allow the exe-
autotasking cution of a parallel program on a dedicated machine or in

a multiprogramming batch environment. A dedicated ma-
With these code modifications there is a much higher level chine is a computing environment which makes all its re-
of parallelism (825 resp. 3003 loop iterations instead of 25). sources (for example all CPUs) available to one program
Each of these iterations can be executed in parallel without without any restrictions. All of the results presented above
changing any data dependencies. are obtained in such an environment.
The modified sequential program is running a little bit
slower (about 185 MFLOPS), therefore in Fig. II the Using one of the multitasking concepts within a multipro-
time results of the modified program are compared to the gramming batch environment, each task has to compete
best sequential version running on one processor. Using 8 for the resources with other tasks of the same program and
CPUs a speedup of about 6.1 is achievable leading to a with tasks of other programs executed at the same time.
total speed of about 1,200 MFLOPS on a CRAY Y-MP Tasks of a program with higher priority may force re-
multiprocessor system. sources to be withdrawn from tasks generated by programs

with lower priority. Usually, the turnaround time of a
program is higher if it is executed within a multiprogram-
ming batch environment than the time it needs on a dedi-

6. Multiprogramming and Parallelism cated machine.

Today most of the CRAY multiprocessor systems are still To evaluate the impact of multitasking onto the multipro.
used within a multiprogramming environment, where the gramming environment and to ensure reproducible results,
individual processors execute different jobs which are there is a need to have a well-defined and constant system
totally independent of each other. All programs compete load. This can be done by choosing a benchmark to gen-

for the available resources. With multitasking, they may erate a multiprogramming environment. After fixing the
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work load, some test jobs are inserted into the job mix to (MIOS) are highly system context dependent. For
study various effects. those values dynamic decisions have to be made to

guarantee a certain program behavior for this pro-
gram.

6.1. Synthetic Benchmark Programs These dynamic decisions are based on information from

Benchmark programs should reflect real program behavior, the hardware performance monitor (HPM) which is avail-

The selection of such benchmark programs is an important able on CRAY X-MP and CRAY Y-MP systems (see

basis for the performance evaluation which may also have [6]). The HPM supplies a set of eight counters which

a strong influence on the results obtained. For example, in track certain hardware related events, i.e. the number of

([2,3]) a benchmark is described which is memory bound executions of specific instructions, memory activities,
and therefore leads to a decreased turnaround time when MFLOPS etc. With this information the complete pro-

microtasking is used. Usually, there is no way of studying gram characteristics can be discovered at each point during

the same benchmark with different memory requirements. execution. A decision can be made if the characteristics

In general, the flexible adaptation of such real-life applica- match the desired program properties. A set of kernels

tion programs to required benchmark parameters (i.e. exists (containing presently about 100 items) with different
modified run-time, different memory requirements, execution properties. In the synthetic benchmark pro-

changed 1/O behavior etc.) is limited because of the strong gram, each call to the HPM leads to a decision which

correlation between the parameters. This is especially true kernel is the next one to be executed to approximate the
in a multiprocessor system where the load of one processor described properties. At the end, the benchmark program
may have influence on the performance of the programs behavior is completely composed of the weighted mean of
running on the other processors (i.e. bank conflicts, the properties of all kernels selected during runtime.
I/O-blocking, etc.). On the other hand, there is a strong
requirement for such flexible modifications of the work The selection of the kernels is done in the following way:

load where each single benchmark program should reflect each program kernel is represented by a point

a certain behavior. Therefore, a system is developed sup- p = (MMREFS,MIOS,MFLOPS) in a three-dimensional

plying synthetic benchmark programs in order to simulate space. The actual program performance of a single
any given work load. benchmark program r is a weighted linear combination of

the performance of program kernels K, referencing a point
On shared-memory multiprocessor systems like CRAY p,, using t, CPU time. At decision time kernel K, is chosen
X-MP and Y-MP, there are only a few program charac- which minimizes the Euclidean distance 9 11.. from the
teristics which influence the activities of the other process- given reference point r, which means:
ors: For example, if the memory requirement of one job
is the total memory installed at a site, then this may cause select K, so that A(i) = iI A(/ with
the other CPUs to execute idle loops. In this category of
interprocessor dependent values the required memory size, + -p
the memory activities, and the I/0 traffic can be categor- ( r " ) + t'P,

ized. Other values like the requested CPU time, the job A(• r - k-i
priority, and the MFLOPS rate are benchmark program
parameters which have no direct influence on jobs running (Ztk) + 11
on other processors. Based on these considerations the k-1

synthetic benchmark programs are generated as follows: This selection procedure enables the simulation of any

Some of the values mentioned above, i.e. the memory three-dimensional point of the convex hull covering all the
size (MSIZ), the job priority (P), and the job time (T) program kernels K. Any point r =
are values which can be assumed to be static. For (MMREFS,MIOS,MFLOPS) outside of this hull will be
each set of such parameters different versions of the approximated by the point of the convex hull which mini-
JCL are used. mizes the Euclidian distance to this point.

Values like the number of million memory references The sequence of kernel selections made at runtime is writ-
per second (MMREFS) or the number of million ar- ten into a file. Further examinations of the same
ray elements transferred per second to an I/0 device benchmark may be controlled by this protocol file. This

9 All values are normalized to the interval (0,1).
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leads to a system load which is exactly the same because 6.2. The Benchmark Generation
the same sequence of kernels K, is executed without any
respect to the actual performance. The simulation of a normal work load implies that a mix

of such benchmark programs must be executed. To built
Besides the protocol file, the synthetic benchmark program such a job mix a benchmark generator is convenient. The
provides run-time output reflecting the program behavior: benchmark system generator described here takes the re-

quired program characteristics for all benchmark programs
* Start time and end time of the job (first and last as an input and generates the set of synthetic programs

statement of the benchmark program are timing rou- which dynamically approximate the characteristics for each
tines); program by using the HPM.

* Required program characteristics (specified by the in- Here, a special benchmark is used which consists of 14
put parameters); different synthetic programs simulating a given user load.

This benchmark was executed on the CRAY X-MP/416
" Obtained program characteristics (based on the infor- under the COS operating system. For simplicity, all work

mation supplied by the HPM). load jobs are running with priority 6, the memory re-

quirement for each of the benchmark programs is 2 MW
In general, the difference between the given program (Mega Words). The other job characteristics are slightly
properties and the benchmark program characteristics ob- changed from job to job, for example the memory activ-
tained are rather small. Already after a few seconds (2 to 5 ities vary from 50 to 110 MMREFS.
sec.), the approximated values are very close to the given
target (if the target lies within the convex hull of the Based on this work load the influence of additional test
kernels). As an example, Tab. 5 describes a subset of pa- jobs on the total system is examined. As test jobs, a se-
rameters of the execution history of one benchmark pro- quential as well as a parallel version of the numerical sim-
gram, named BE001. The table shows that the values ulation program described in section 5 is inserted into the
specified for the job and the values really obtained by job mix. Each of the test jobs has done the same amount
kernel selection are quite the same. In this example, within of work. About 4MW main memory are required to exe-
60 CPU seconds about 10,000 kernel selection decisions cute the jobs, and they ran with job priority 7.
are made. If the kernel selection is done by using the pro-
tocol file, the obtained program performance is about 2 to 6.3. The Benchmark Analysis Package
7 per cent higher because of the omitted calls to the HPM.

The total benchmark supplies information about different
pgm . influences sequential and parallel programs have on the

program • system behavior. With respect to the amount of data de-
characteristics scribing the system behavior, an analysis without auto-

for BEOOI matic tools is not practicable. For that reason, a
benchmark analysis package was developed by the author

Specified by to provide collected information for all benchmark pro-

the input 60.00 2MW 110.00 80.00 grams. It provides tables and graphical charts, because vi-
Ob e - - sualization may be helpful in finding the typical benchmark

kernel selection 60.28 2MW 110.33 80.19 behavior as well as hot spots.

Tab. 5. Program characteristics of benchmark pro- Fig. 12 shows one of the visualizations created by the
gram BEO01 benchmark analysis package. It is a benchmark execution

profile where a sequential job is inserted as a test job (left
Using synthetic benchmark programs in this way, the only hand side). For each job the chart shows the start and end
information needed for simulating a real workload are the time (in seconds) relative to the start of the first job
program characteristics of the important jobs running at a (BEOO 1). It also contains information how long the jobs
site. All these data are available through the accounting stayed in the mac-.ine and how much CPU time was con-
data and the HPM. With this information a copy of the sumed (black color). The wait time is computed as the
real workload can be executed in an artificial benchmark difference between turnaround time and CPU time. In the
environment, and the real time can be scaled on a much right comer, the sum of the CPU and the wait time for all
lower level. jobs and for the test job is printed. The total time indicates

273



Jobs Jobs20610789 1:45

55
10
15
20
2525
30
3 5 4 0
40 4
454
50 50
5565, -E171 L 65 - --f---- 11

0 701;
75 80
80 85 1
85 9090C 95 -

105 110-

11M-10 IA120 IfII-I--

120 20 HL
125 130 1 1 1
130 135
135 140
140 145
145 150
1505 15-
155 160
160 165
165 R 7Ben hr-cr- -

Real- 17 0  _ _cark 3e -15 _ 1 a 90 o _2_Q
175 , 5 ti C U- 6 53.s 4

tim e f8 c i_- I I 1.. 6 6 .4 5 w e t t - * I 3e16 8 . 9 0 s

W: - f e 462 . 25s W!coiosk: 4000. P-io 7
Seqwenflc, 4000K Pr;o 7 CPU-time * - Wail-time c u- "i. 45.38,

CPU -tim e 5 5 .o4I R eu- ir 45 . 15,

Pe-t l me 57 .5 1

Fig. 13. Benchmark environment, microtasking test
Fig. 12. Benchmark environment, sequential test job job inserted

inserted

the real time for the whole benchmark, multiplied with the
number of CPUs. Fig. 13 shows the same benchmark,
but executing the microtasking version of the simulation IM-- k-1,1

program. Comparing these two charts it can be realized
that inserting microtasking can lead to both, reduction of System tasks

turnaround time and slightly decreased CPU time for the
whole benchmark. On the other hand, the accumulated
wait time is increased which means that at least some jobs ,i h
have to stay longer in the machine. EXEC requests
All the information used above is provided by the HPM 2I , L

and timing routines for each program. But there is also a i z --
need to look at the system activities to get a knowledge Job scheduler

about the rate of multitasking concepts with respect to the EXP requests statisti"

interests of a computer center. To measure system activ-
ities, the system performance monitor (SPM) can be used Rg 14. Sketch of the Infornatlo. provie by the

benchmark analysis package, based oa sys-
(see [5]). It provides several blocks of information con- t p r mont (SPM) data
cerned with all important system activities. Fig. 14 shows
a sketch of the information structure available by the SPM.
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On the first level, information about system-wide ac- Inserted Test Jobs
counting data like user time and wait-on-semaphore time, Time Micro- Micro-
but also, for example, the time required by operating sys- (seconds) Sequetial tasking tasking
tern services are collected. Each of these services is pro- (priority 7) (priority 7) (priority 6)
vided by a system task; for each of the system tasks the User 670.582 663.073 667.498
total execution time and the number of executions can be Wait-on- 0.000 6.414 0.358
displayed on the next level. For special system tasks like Semaphore

the exchange processor or the job scheduler further infor- 1/0 98.561 101.944 99.292
mation and statistics are supplied on the next level. By the Operating
example of the exchange package (EXP) requests, the system 2.150 2.175 4.077

presentation capabilities of the benchmark analysis pack- kernel

age are shown. Either the total information for all 96 EXP Systemwait __ .1__2 0.136 _0.1

requests is given in one bar chart, or, as in Fig. 15, selected
values are collected in a table. Operating

system 6.932 7.117 7.645
services

EXP requests of ca I Tab. 6. Time distribution from the system perform-
ance monitor: Benchmark programs are

iGet current date (2) 18 running with priority 6, system load was kept
Enter message in Iogfile (4) 1,132 fixed
Open datoset (8)26COe dataset 261 The amount of user time is nearly the same as the time
Crete/modse y ocal datcsei (12) 440 accumulated by the single jobs. Parameters which cannot

Get next control statement (14) 295 be measured on a job basis like operating system activities
Permanent dolasei management request (17) 138 can be stated by means of this tool.
Dispose daloset (21) 16

iReturn accumulated CPU-time (23) 1 154 As a first result of the investigations, the folklore of
Deray job (29) 15 strongly increasing operating system overhead as a conse-

lRoll lob (44) 0 quence of the usage of multitasking seems to be disproved.
I Request memory (59) 77 The additional system activities are only slightly raised, the
,Generale new lask (63) 9 wait-on-semaphore cycles can be decreased to nearly zero
SManipulate HPM (71) 90J if the priority of the multitasking program is on the same

level of priority or lower than with the other benchmark
jobs. These results seem to be typical for the fine-grain

Fag. 15. Tool output for EXP reluests multitasking concepts; for macrotasking jobs at least

slightly increased CPU times are observed. In future, this
With this tool, the impact of inserted test jobs can be easily benchmark environment can be used for further intensive
visualized. For the benchmark described in section 6.2, the examinations, and it will also be implemented under the

total system activities measured by the SPM are listed in UNICOS operating system on the CRAY Y-MP to study
Tab. 6. the efficiency of multitasking concepts in a UNIX multi-

programming job mix.

7. Conclusion

The functionality of the multitasking concepts varies
widely from the parallel execution of subroutines with
macrotasking, the introduction of parallelism with direc-
tives in microtasking, to the automatic parallelization of
autotasking. For macrotasking, the availability of better
tools for the detection of parallelism and the debugging of
programs, working on an interprocedural basis, is urgent.
The new autotasking concept is a superset of the earlier
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microtasking implementation: all microtasking primitives [9] JJ. Dongarra and S.C. Eisenstat, Squeezing the
are translatable to new autotasking directives, although Most out of an Algorithm in CRAY FORTRAN,
both concepts can coexist within one program system. ACM Transactions on Mathematical Software 10 (3)
Therefore, autotasking will become the more important (1984) 219-230.
fine-grain concept. The compiling system cf77 which im- [10] M. Furtney, Parallel Processing at CRAY Research,
plements the autotasking concept provides remarkable ca- Proc. of CRA Y User Group Meeting (Fall) (1988).
pabilities in the field of automatic parallelization. The [11] F. Holfeld, Vector-supercomputers, Parallel Com-
analysis features still should be enhanced, but user inter- puting 7 (1988), 373-385.
vention yet remains necessary in complex cases. [12) F. Hossfeld, R. Knecht, and W.E. Nagel, Multi-

tasking: Experiences with Applications on a CRAY
In future, the influence of multitasking concepts in a X-MP, Parallel Computing 12 (3) (1989).
multiprogramming environment should be studied more [13] S. Knecht, M6glichkeiten des Multitasking zur
intensively because the efficient support of such concepts Beschleunigung von Standardalgorithmen, itl-
by the operating system is one requirement for the accept- Spez-361, Kernforschungsanlage J0ich (1986).
ance of multitasking for production codes in computer [14) A. Liegmann, Die Strategie des Microtasking als
center environments. Mittel zur Beschleunigung von Programmen auf

dem Vektorrechner CRAY X-MP, Jil-Spez-435,
Kernforschungsanlage JOlich (1988).
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Abstract

In this exploratory paper we discuss the Daubechies wavelet
solution of boundary value problems and initial boundary value
problems for ordinary and partial differential equations in one space
dimension. The theoretical and numerical results suggest that for
the above class of problems wavelets provide a robust and accurate
alternative to more traditional methods such as finite differences
and finite elements. The one dimensional analysis done in this paper
can also be seen as a necessary step to the solution of
mulidimensional problems where various technical issues remain to
be resolved.
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Introduction

This paper describes selected developments in wavelet-based numerical methods for

solving partial differential equations (PDE's). The scope of this paper is limited to a small

but representative set of equations in one space variable. Methods for solving problems in

two and three dimensions are currently being developed.
The wavelet-based methods adapt a Ritz-Galerkin technique that uses functions

associated with the orthonormal bases of compactly supported wavelets constructed in
[Daubechies, 1988]. As in the case of the earlier orthonormal wavelet basis constructed in
[Meyer, 1985], Daubechies' bases are unconditional bases for the Sobolev spaces and
therefore provide accurate approximations of PDE's solutions. Furthermore, the
'multiresolution analysis' properties of these bases, described in [Mallat, September 1987]
and [Meyer, 1986], are ideally suited for multigrid methods and adaptive grid refinement
methods. Finally, the compact support of the basis functions makes the 'wavelet transform'
algorithm, described in [Mallat, May 1987], extremely efficient for computing numerical

solutions of PDE problems.
Numerical solution of a PDE problem requires a discretization method that reduces the

problem to finding the soluti 'i of an algebraic equation (AE) in a finite number of
unknowns. The latter problem is amenable to digital computation. PDE's involve functions
that model spatially distributed, and possibly time varying, physical quantities such as
temperature, velocity, or displacement, and differential operators that model the physical
processes which determine the static or dynamic behavior of these quantities. Discretization
methods, such as finite differences, finite elements, and spectral methods, represent the

solution function u by an approximation v defined by N discrete parameters. Then the
differential operator and the constraints such as initial values and boundary conditions are
approximated by algebraic operations involving these parameters. This results in an AE
whose exact solution determines v. A discretization method is effective if the truncation
error u-v tends to 0 'rapidly' as N increases.

Numerical solution of a PDE problem also requires a method for solving the resulting
AE that results from discretization. It is only required to obtain an approximate solution w
of the AE such that the algebraic error v-w is comparable to the truncation error u-v. Since

the total error e = u-w satisfies e = truncation error + algebraic error, if v-w - u-v then
additional computation is more effectively utilized by increasing the number of
discretization parameters to decrease the truncation error. Algebraic solution methods
consist of direct methods, such as LU factorization, which yield a solution accurate to
within finite word length limitations, and iterative methods, such as conjugate gradients and
multigrid , which yield a solution whose accuracy increases with the number of iterations.

The analytical and computational properties of scaling functions and wavelet functions

provide powerful numerical methods for discretizing PDE's and for solving the resulting

AE's. Our paper is organized as follows.
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Section 1 reviews the construction of the scaling functions and wavelet functions
described in (Daubechies, 1988] and derives the analytical and computational properties
that address the requirements for solving PDE's. Sobolev approximation properties of the
scaling functions in Hm(R) and of their restrictions to (0,1) in Hm(0,1) are derived as a
consequence of the vanishing moments properties of the associated wavelets. These
properties provide effective wavelet-based discretization methods. The computational
properties of wavelets are derived from the hierarchical structure of the scaling functions.
These properties include algorithms for expanding functions in wavelet bases from thier
sampled values and for representing differential operators with respect to wavelet bases.

Section 2 addresses general results concerning the existence, uniqueness, and
approximation of the solutions of linear variational problems in Hilbert spaces. Examples
concerning elliptic boundary value problems in one space dimension are used to illustrate
some of the above notions.

Section 3 discusses wavelet-based solutions of second order linear elliptic PDE's with
Neumann and Dirichlet boundary conditions. A variational formulation of the Dirichlet
problem is used to reduce it to a small number of Neumann problems involving Lagrange
multipliers. A Galerkin basis consisting of translates of a dilated scaling function,
truncated so as to have support in the interval (0,I), is used to discretize the Neumann
problem. The resulting AE's are solved using LU and Choleski factorization methods.
Numerical results are presented to illustrate the effectiveness of the new methodology.

Section 4 discusses the wavelet-based solution of singularly perturbed second order
linear elliptic boundary value problems. Solutions of these problems may exhibit boundary
layers requiring higher resolutions where the strong gradients exist. A domain
decomposition method is used to compute and match wavelet based solutions in the low
and high gradient regions.

Section 5 discusses multigrid methods for solving the second order linear elliptic
problems with periodic boundary conditions.

Section 6 discusses wavelet-based solutions of linear and nonlinear parabolic equations
in one space dimension. Here space approximations using wavelets are combined with time
stepping methods to solve the one dimensional heat equation and the regularized Burgers
equation. Furthermore, in the case of the Burgers equation, we discuss the use of basis
consisting of wavelets together with scaling functions in order to filter spurious oscillations
developoed in the shock region.

Section 7 discusses the wavelet-based solution of the linear advection equation Du/Dt +
au/ax = 0. As in Section 6 a wavelet approximation for the space variable is combined with
time stepping methods.

Finally, Section 8 provides further comments together with our conclusions on these
preliminary experiments with wavelets as tools for solving differenrial equations,
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1 Description and Basic Properties of the
Daubechies Scaling Functions and Wavelet
Functions

1.1 Description of Daubechies' Functions.

The Daubechies scaling functions and wavelet functions constructed in [Daubechies, 1988] are
considerably more complex and elusive than the more familiar elementary functions. Therefore, it is
convenient to consider these functions as generalizations of a simpler set of functions described below.

Define functions and ' by :

(1.1) O(x) = for 0< x < 1, else O(x) = 0,

(1.2) W(x) = for 0 Sx < 1/2, (x) = -1 for 1/2:5 x < 1, else O(x) = 0.

and define Oj.k(X) = 2j/20(2Jx-k) and Vj,k(x) = 2J/2W(2Jx-k) for any pair of integers (j,k). The

functions (Vj,.k: j ; 0, k = 0,...,2-1) are the classical Haar functions, first introduced in [Haar, 1910]

to provide an orthonormal basis for L2(0, 1). The Daubechies scaling functions and wavelet functions

are generalizations of the Haar scaling functions ({j,k) the Haar wavelet functions ({if,k}" We will

describe the properties of the Haar functions using subspaces Vn and Wn of L2(R), n any integer,

defined by:

(1.3) Vn  closure of linear space spanned by { 0,.k: k an integer),

(1.4) Wn closure of linear space spanned by {Vnk: k an integer).

Then the following properties hold:

(1.5) Vn+ 1 I Vn for every integer n,

(1.6) Closure (U nVn) = L2 (R),

(1.7) (mk: k an integer) is an orthonormal basis for Vn for every integer n,

(1.8) Wn is the orthogonal complement of Vn in Vn+l,
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(1.9) {Vnk: k an integer) is an orthonormal basis for Wn for every n,

(1.10) Ojk and Njk have compact support for all integers j, I.,

(1.11) f *i.k(x)dx = 2 -A and f \VjIk(X)dx = 0 for all integers j and k.

A further consequence of properties (1.5),(1.6), and (1.8) is

(1.12) L2(R) = Vn ( 9 W = ED Wj, for every integer n,
j>-n j

Now let Pn denote the orthogonal projection of L2(R) onto Vn and let Qn denote the orthogonal

projection of L2(R) onto Wn, therefore Pn., = P. +Qn. Then for any f r L2(R), Pn(f) yields a 2- n

low resolution' approximation to f and a 'higher resolution' approximation P,, (f) may be obtained

by adding a 'high frequency' component Qn+(f).

For every integer N 2 1 Daubechies constructs a pair of functions 0 and 'V that are the functions in
(1.1),(1.2) for N = 1 and that generalize these functions for N > 1. Her construction involves the
following steps:

Sigpd Construct a finite sequence h(0),...,h(2N-1) satisfying:

(1.13) X h(k)h(k+2m) = SO, for every integer m,

k

(1.1,) 1 h(k) = "12,
k

(1.15) E g(k)km = 0, whenever 0< m _< N-i, where g(k) - (-1)kh(-k+1).

k

(Note that for m = 0, equation (1.15) is implied by equation (1.13) and equation (1.14))

&cy.. Construct the trigonometric polynomial m0 (y) by

(1.16) m0 (y) = '2Y h(k)exp(iky),

k

284



S -Construct the scaling function i so its Fourier transform OA satisfies:

(1.17) *A(y) = (1/427E) 1- mo(2ky),

Ste 4 Construct the wavelet function N by

(1.18) xy(x) = g(k)0(2x-k).

k
For N > I these functions define sets {0nk}, { ]',k } and subspaces V n and W n of L2 (R)

satisfying properties (1.3)-(1. 11) and, in addition, the following properties:

(1.19) On.k = h(j-2 k)On+lj and Vn= g(j- 2 k)on+,I for any integer n,
J J

(1.20) support(Onfk) = [2-nk,2-n(k+2N- 1)], support(4n., ) = [2n(k+ 1-N),2n(k+N)],

(1.21) f xVjk(x)x m dx = 0 for all integers j and k and any integer 0 < m < N- 1,

(1.22) Oj,k and Xj.k E cX(N) = space of Holder continuous functions with

exponent X(N), where X(2) = 2-1og 2 (1+4l3) -. 5500,

X(3) = 1.087833, X(4) = 1.617926, and .(N) = 0.3485N for large N.

Remark 1.1 Equations (1.19)-(1.21) are derived from the properties of Onk and Nfn.k in [Daubechies,

1988]. Property (1.22) is derived in [Daubechies and Lagarias]. Graphs of the Daubechies scaling

functions and wavelet functions for 2 _ N _< 4 are illustrated in Figure 1.1.

1.2 Approximation Properties of Daubechies' Functions.

For m > 1 and 12 an open interval of R (e.g. 0 = (0,1) or Q = R) define spaces:

(1.23) H°(92) - L 2 (!2) with the standard Hilben Space inner product <.,.>,

(1.24) HI(fQ) = fe Hm-'(2) : f'e Hm'l(Q)) with Hilbert Space inner product

(',)m defined inductively by , = <','> and (f'g)n = <fg> + (f "g )m' and

associated norm II.I1m,
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(1.25) D(fl) = space of infinitely differentiable functions with compact

support contained in Q (i.e. if Q = (0,1) these functions 'vanish' at 0 and 1)

(1.26) H0
m(Q) = closure of D(Q) in Hm(Q) with respect to the norm II.1I.

(1.27) for any fixed integer N > 1 and any integer n, Vn(W) = restriction to Q

of functions in Vn where Vn is defined as in (1.3) by the scaling function

corresponding to N, i.e. Vn(R) = Vn.

For any integer m >_ 0, closed interval I, and function f : I --> R we define

(1.28) Em(fI) = min ( max If(x) - p(x)l ),
p(x) x e I

where p(x) ranges over all polynomials of degree 5 m. Then

Lemma I If N > 1, f e D(R) with B = max(If(M(x)I), then for any I = [a,b],

(1.29) ENI(f,I) 5 2B(b-a)N/(4NN!).

Prgf This is one form of Jackson's theorem, ref. [Dahlquist and Bjorck, 19741.

Lemma 2 If f and B are as above and V is a wavelet with N 1 1, then

(1.30) lf'NiJk>l 5 C2-j(N+1/2 ) where C = 2B(2N-I)N+lf2/(4NN!), for all integers j, k.

Pgf Follows from equation (1.2 1), lemma 1. 1, and Schwarz's inequality.

Lemma 1.3 If f and C are as above, let m > 0, and choose N > m such that the associated scaling
function 0 and wavelet function V' belong to H(R) (the existence of such an integer is implied by

property (1.22)), let n be any integer, let Vn be as in (1.3) and let Pn denote orthogonal projection

onto Vn, then

(1.31) If - Pn(f)IIm 5 E Xkl<f, j.k>' WIhkYIlm 5 D2fn (N m).

j>n k
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No1

where D = CEIIfII/(1-2 "(N-m)) and E2 = (2N-1)x(length of smallest interval containing support (f)).

Proof Follows from (1.30) and the fact that Nj,kllm !< 2j-lvIt,.

Lemma 1.4 The set of restrictions of functions in D(R) to Q is dense in Hm(W) for every m > 0.

Proof This is the classical density theorem which follows from the classical prolongation theorem for

Sobolev spaces, [Adams, 1975], [Brezis, 19831

We are now prepared to derive the main result of this section that, together with the general
approximation results in section 2, provides the mathematical justification for wavelet-based solution
methods for boundary value problems discussed in later sections.

Theorem 1.1 Let m > 0 and choose N, p, and V as in lemma 1.3, let g E Hm(Q), then for any e > 0

there exists an integer n such that

(1.32) IIg-hII. < e,

where h is the restriction to Q of a function in Vn.

Proof Follows from lemma 1.3 and lemma 1.4.

Remark 1.2 It follows from property (1.22) that for m = 1, N = 3 satisfies the hypothesis of theorem
1.1. This choice is adequate to treat second order elliptic boundary value problems in one space
dimension. For m = 2, N = 7 satisfies the hypothesis of theorem 1.1 and hence is adequate to treat
fourth order elliptic boundary value problems.

1.3 Computational Properties of Daubechies' Functions.

Computational properties are mathematical properties that are related to algorithm requirements and
algorithm performance. This section will discuss computational properties related to both direct
algorithms and iterative algorithms.

1.3.1 The Mallat Transform.

Fix an integer N > 1 and let 0 and W be the associated scaling function and wavelet function. For

any integer n let V n and W, be defined as in (1.3),(1.4). Then from properties (1.7)-(1.9) it follows

that every f r V,, 1 admits the representation
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(1.33) f(x)= X c(k),llk= X a(k),.k + I b(k)In,k

k k k

where a,b, and c are square summable sequences. Then by property (1.19) the sequences a and b are
determined from the sequence c by a unitary transformation T: L2 (Z)xL2(Z) -- > L2(Z), given by

(1.34) T(a,b) = c where c(k) = h(k-2j)a(j) + g(k-2j)b(j).
J J

The inverse T-1 L2(Z) -- > L
2
(Z)xL

2
(Z) is given by

(1.35) T "'(c) = (a,b) where a(k) = Xhj-2k)c() and b(k) = Xg(j-2k)c(j).

J J

Remark 1.3 The transformation T is called the Maflat transformation and is described in detail in ref.

[Mallat, May 1987]. For any integer n, integer J ; 1, and f = L2(R), the functions Qn 1 (f),Qn.2(f), ...

,Qn-j(f),Pnj(f) can be computed by first computing Pn(f) and then applying the Mallat transform J
times. This yields a 'multiresolution' analysis of a function f. The computation of T or T "1 requires
only N multiplies and N-1 additions for each 'output value'.

1.3.2 Computing the Expansion of Functions.

We will now discuss how to compute the expansion of functions with respect to a 'wavelet' basis

from sampled values of the function. This 'expansion' problem is formalized as follows. Fix an

integer N 'a 1 and let 0 and \V be the associated scaling function and wavelet function as in Section

1.3.1. Let n be any integer, let Vn be defined by (1.3), and let Pn denote the orthogonal projection of

L2(R) onto Vn. The 'expansion' problem consists of computing an approximation to Pn(f) where

f e L2(R). This is equivalent to the problem of evaluating an approximation to the integrals

2"n(k+2N-1)

(1.36) c(k) = f Onk(x)f(x)dx for every integer k.
2-nk

This requires an approximate knowledge of f(x) over each dyadic interval I,, k having the form

In.k = [2"nk,2"n(k+2N-l)].
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Our general approach to this approximation problem is described as follows. For each integer k let

gk(x) be a function (perhaps a distribution) defined on In.k that approximates (perhaps in the weak

sense) the restriction of f to 1,,k , then define

2"n(k+2N-1)

(1.37) d(k) = f .nk(X)gk(x)dx for every integer k,

2-nk

to approximate c(k) for every integer k, then define an approximation Pn-(f) to Pn(f) by

(1.38) Pn-(f) = Xd(k)On'k

k

The resulting error function can be related to the errors Id(k)-c(k)l by applying Holder type inequalities

to the equation
k:5 21x

(1.39) Pn-(f)(x)-P,(f)(x) = I (d(k)-c(k))Ok(x)

k > 2nx-2N+1

We describe two specific techniques for computing approximations d(k) to the expansion

coefficients c(k) of Pn(f) from sampled values of f at dyadic rationals (f(2-n'sj) : j r ZI where s > 0.
Their performance, measured by the computational complexity and by the asymptotic bounds for the

error Id(k) - c(k)l as n and s are large, is discussed under the assumption that f is infinitely

differentiable and that O(x) has Holder exponent X(N) > 1, (i.e. N *a 3 and O(x) is continuously
differentiable). These assumptions are made in Section 5 to discuss the computational complexity of

wavelet-based multigrid methods for certain classes of problems.

Approximation Technique 1 Choose an integer s 2t 0 and let gk(x) be the measure

j = 2S(k + 2N -1)

(1.40) gk(x) = 2-n-s I f(2-n-sj) 8(x - 2-n-sj)

j = 2Sk
to obtain

2S(2N - 1)

(1.41) d(k) = 2-s-n/2X0(2sj) f(2-nk + 2-n-sj)

j--0
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This requires - 2S(2N - 1) operations to compute each d(k) and therefore it requires - 2n+s(2N - 1)

operations to compute the expansion of Pn(f) per unit interval. Under the assumptions on f and 0

above, it can be proved that there exists constants C1 and C2 such that

(1.42) Id(k) - c(k)l <C 12
3 n/2-s + C22 "3n/ 2 -Xs where X = min{ 1, X(N) - 1}

Remark 1,4 In [Resnikoff, March 1988] explicit expressions for the values of 4) at dyadic rationals as

rational functions of the parameters (h(i) : i = 0,...,2N-1) that define 0 in equations (1.13)-(1.18) are

derived and the following equation is derived

2S(2N- 1)

(1.43) 2 -sX 4(2-sj) = 1

j=0

This important result is required to derive relation (1.42) as well as to compute d(k) in equation (1.41).

Remark 1.5 Relation (1.42) implies that if X< 1, a more efficient algorithm for computing the

expansion Pm(f) is obtained by combining the approximation technique above with the inverse Mallat

transform as follows.First choose an integer n > m and an integer s > 0 and calculating (d(k)} for the
expansion Pn(f). Then compute n - m stages of the inverse Mallat transform as described in Remark

1.3 to obtain Pm(f). Optimizing the choice of n and s requires specification of the required accuracy

and the value of the constants C1 and C2 in relation (1.42).

Approximation Technioue 2 Choose integers s > 0, p > 1 and q and choose gk(x) to be the Lagrange

interpolating polynomial to f(x) at the set of points (2-n-s (2Sk + q + j): 1 j _ p). This polynomial
is defined by

j=p

(1.44) gk(X) = f(2-n-s (2sk + q + j ))Lj (2n+s x- 2Sk-q)
jl

where
i=p

(1.45) Lj(y)=l [(y-i)/(j- i)], forj=l ... ,p
i=l

iej

to obtain
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j-=p

(1.46) d(k) = M(j) f(2"n-s , + 2Sk + q))

j=l

where
2N-I

(1.47) MO) = 2-n/2J Lj (2Sx - q)o(x)dx for j 1....p

0
This requires p operations to compute each d(k) and thus = 2np operations to compute the expansion
of Pn(f) per unit interval. Under the assumptions on f and 0 above, Newton's general interpolation
formula [Dahlquist and Bjorck,1974] implies there exists a constant C3 such that

(1.48) Id(k) - c(k)l < C3 2' ( p + 1/2) n

Clearly, for p _ 2, this technique is asyptotically more efficient than approximation technique 2.
Furthermore, the M(j) are linear combinations of the 0...,p - moments of 0. The latter can be
expressed as rational functions of the (h(i) : i = 0,...,2N-1) using the results in [Resnikoff, March
1988).

1.3.3 Representing Differential Operators in Wavelet Bases

Let m _ 0 and let N > m be such that the associated scaling function 0 E Hm(R). Let Vn be defined
as in equation (1.27) and let Pn denote the projection of V onto Vn. Let Hm(Rp) denote the set of
functions in Hm(R) that are periodic of period I (intuitively, Rp represents a circle) together with the
inner product

m x=l

(1.49) (f,g)m = f fN)(x)g(i)(x)dx,
j=0 x=0

and associated norm 11.11m. Furthermore, let Vn(Rp) denote Vn r) Hm(Rp). Then clearly

(1.50) Vn(Rp) = (f e Hm(R) : f = I c(k)o,, k and c(k+2n) = c(k) for all k)

k

Let m, N, and 4 be as above and let V denote either Hm(92), for some interval 0 of R, or Hm(Rp).
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For any integer n let Vn denote either Vn(Q), defined as in equation (1.27), or Vn(Rp), defined as in

equation (1.50). For any operator A : V --> V* (the dual space of V) and for any integer n, let An : V

--> V* denote the operator defined by

(1.51) <An(f),g> = <Pn*(A(Pn(f))),g> = <A(Pn(f)),Pn(g)>, for every f, g V,

where <.,.> : V*xV --> R denotes the canonical pairing and Pn* denotes the adjoint of Pn. Clearly,

the sequence {An) provides a sequence of approximations to A as n increases. Furthermore, the

operator An is defined by the set

(1.52) (a(n,ij) = <An(bi),bj> : (bi } form a basis for Vn).

The techniques in [Resnikoff, March 1988] provide explicit formuli for calculating [(an,ij)} where A

is any differential operator whose coefficients are piecewise polynomial functions whose associated

intervals have dyadic raional endpoints. In this case, each a(n,ij) is a rational function of the scaling

parameters (h(k)} that define 0 in equations (1.13)-(1.17).Furthermore, a(n,ij) = 0 whenever li-jl

2N-1.

For the remainder of this section we will assume that either V = Hm(R) or V = Hm(Rp) and that A

is a differential operator having constant coefficients. Then clearly for any integer n, a(n,ij) is a

function of n and of j-i which we will denote by a(nj-i) (arithmetic on indices will be considered

modulo 2n if V = Hm(Rp)). Identify Vn with its dual in L2(R). Then the operator An, with respect to

either the basis {€0n.k : k an integer) of Hm(R) or the basis (0n.k : 0 < k < 2
n ) of Hm(Rp), is

represented as convolution with the function a(n,.). Therefore, the eigenfunctions of An have the form

(1.53) FC = exp(icok)$rk
k

and have corresponding eigenvalues that are expressed in terms of the Fourier series of a(n..) by

(1.54) An(FO) = aA(n,c)Fco, where aA(n,o) = I a(n,k)exp(ico)
k

where for V = Hm(R), 0 5 w3 < 2n and k is summed over all integers, and for V = Hm(Rp). P o

assumes the discrete values (21Ek/2n : 0 < k < 2nI and k is summed over 0 <- k < 2n . The function

aA(n,co) will be called the spectrum of the operator An. Clearly, if V = HIm(R) and if A = dr/dxr (r-th

derivative operator), then a^(n,o) = 2nraA(0,co). Figure 1.2 illustates the spectrum of the operator A0
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for A = d2 /dx 2 where 0 corresponds to N = 3 and V HI(R). In this case a(0,0)=-5.2679, a(0,k)=0

for k > 5, and a(O,.) is symmetric (therefore aA(O,w) is real). The spectrum of differential operator,

will be used extensively in Section 5 and in Section 6.1.

2 Classical Results Concerning the Approximation of

Linear Variational Problems

2.1 Linear Variational Problems in Hilbert Spaces.

All the linear elliptic boundary value problems to be discussed in this paper can be reduced to the

following (variational) formulation

Find u e V such that
(2.1)

a(u,v) = L(v), for every v e V.

In (2.1) V, a(.,.), L are as follows:

(i) V is a Hilbert Space (real for simplicity) with scalar product (.,.) and

associated norm 11.11.
(ii) a: VxV --> R is a bilinear form (possibly non symmetric), continuous,

and V-elliptic over VxV; the last property means that there exists

cc > 0 such that

(2.2) a(v,v) > oXIIvIl 2, for every v e V.

(iii) L: V --> R is linear and continuous.

If properties (i)-(iii) hold it follows then from the Lax-Milgram Theorem that problem (1.1) has a

unique solution.

Remark 2.1 If the bilinear form a(.,.) is symmetric (i.e. a(v,w) = a(w,v) for every v, w in V) then

problem (1.1) is equivalent to the following minimization problem:

Find u e V such that
(2.3)

J(u) J(v), for every v r V,
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where J is defined by

(2.4) J(v) = (1/2)a(v,v) - L(v).

Indeed, equation (2.1) can be seen as the Euler-Lagrange equation associated to problem (2.3).

Remark 2.2 Let V* denote the dual space of V and let <.,> : V*xV --> R denote the canonical duality
pairing. Then it follows from the Riesz Representation Theorem that there exists A E Isom(V,V*),
uniquely defined, such that

(2.5) a(v,w) = <Av,w>, for every v, w E V.

Then, for notational convenience, introduce I E V* such that

(2.6) L(v) = <l,v>, for every v e V.

Problem (2.1) is therefore equivalent to the following 'linear equation'

(2.7) Au = 1.

Remark 2.3 It follows from (2.5) and (2.6) that

(2.8) la(v,w)] < 11AIl lvii 1lwl, for every v, w r V,

(2.9) a(v,v) > IIA-h1-1 11v112, for every v E V,

where 11Ail and IIA-11 are the standard operator norms. Indeed, the largest constant a in (2.2) is

precisely IIA-11H.

2.2 Examples

We illustrate the above generalities by discussing below the variational formulation of some
boundary value problems for second order differential equations.

Example 2.1 To illustrate the above generalities, lets consider the following homogeneous Dirichlet
problem on the interval [0,1] :

(2.10) -u" + Ou = f in (0,1),
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(2.11) u(O) = u(l) = 0,

where in (2.10) a is a positive constant and f e L2(0,1) (actually a can even be 'slightly' negative

and f can be less regular than an L2 function). It can be shown that solving problem (2.10),(2.11) in

H0
1(0,1) = { ue H1(0,1):u(0)=u(1)--O) is equivalent to solving a linear variational problem of the form

(2.1) with:
I

(i) V - H0
1(0,1); (v,w) = f (v'w' + vw)dx, 1lv11 = (v,v) 1 2.

0

(ii) a(v,w) = (v'w' + ovw)dx.

0

1

(iii) L(v) J fvdx.

0

It can be shown that the hypothesis of the Lax-Milgram Theorem are satisfied here implying that the
corresponding problem (2.1) has a unique solution in Ho0 (0,1) which is also the unique solution of
(2.20),(2.11) in the above space. In this case, V* can be identified with the dual space H-3(0,1) of

H0
1(0,1) and A with the operator A: H0

1(0,1) --> H-1(0,1) defined by A(v) = -v" + ov. This
concludes (momentarily) the Dirichlet problem.

Example 2.2 Now consider the following inhomogeneous Neuman problem on the interval [0,1:

(2.12) -u" + ou = fin (0,1),

(2.13) -u'(0) = c, u'(1) = d,

where in (2.12) Y is a positive constant and f e L2 (0,1). It can be shown that solving problem
(2.12),(2.13) in HI(0, I) is equivalent to solving a linear variational problem of the form (2.1) with
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V = H1(0,1), a(.,.) the same as in example 2.1, and L given by:

I

(i) L(v) f fvdx + cv(O) + dv(l).

0

As in example 2.1, it can be shown that the hypothesis of the Lax-Milgram Theorem are satisfied here
implying that the corresponding problem (2.1) has a unique solution in HI(0,1) which is also the
unique solution of (2.12),(2.13) in the above space. In this case it is very convenient to identify the
space (H1(0,1))* with H 1 (0,1) x R 2; then the operator A is defined by

(2.14) Av = (-v" + sv, {(v-vo)'(1), -(v-v 0)'(0)) },

where vo is the unique solution in H0
t (0,1) of the Dirichlet problem

(2.15) -v0 " + v0 = -v" + av,

(2.16) v0(0) = v0(l) = 0.

Equation (2.15) holds in H-1 (0,1) and it is quite obvious that v0 depends linearly and continuously on
V.

2.3. General Approximation Results.

Concerning now the approximation of problem (2.1),(2.7) we consider a family (Vn}n of closed
subspaces of V; the Vn are finite dimensional in practice. On Vn it is then quite natural to
'approximate' problem (2.1) by

Find un r Vn such that

(2.17)

a(un,v) = L(v) for every v r Vn.

Problem (1.17) obviously has a unique solution from the Lax-Milgram Theorem. It is then a simple
exercise to prove the following approximation property:

(2.18) Iun - ull hAII IIA'1I 1Iv - ull, for every v E Vn.
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If the bilinear form a(.,.) is symmetric then the above inequality can be refined to yield

(2.19) Hun - u5l ( 1IAII [IA'i1) " - Ilv - ul, for every v E Vn.

Remark 2.4 Relation (2.18) clearly implies

(2.20) Hun - ull 1 1Ail i1A-11l Inf [iv - ull: v r Vnl;

and an analogous relation follows from (2.19).

From the results above we have

(2.21) limit 1un - ul' = 0 if limit (Inf ( l1v - ull : v e Vn ) =0
n -->+o. n --

In the case where VI CV 2 C... Vn-.lVn ... then (2.21) is automatically satisfied if the closure of

Un Vn is equal to V.

In the following sections we shall use the properties of the Daubechies scaling functions and wavelet
functions discussed in Section 1 to construct subspaces Vn of H'(92) (where f2 is an open interval of

R) satisfying relation (2.21).

3 Wavelet Solution of Linear Elliptic Problems

In this section we shall discuss the numerical solution of linear elliptic problems in one space
dimension. We shall consider the Neumann problem first since the solution methodology for the
DirichIet problem that we discuss in this section is essentially based on the solution of a very small
number of Neumann problems with Lagrange multipliers on the right hand side. Using numerical
experiments we shall evaluate the quality of the wavelet solution: indeed the results to be described in
the following sections seem to indicate that wavelets provide accurate approximate solutions, for linear
elliptic boundary value problems in one space dimension.

3.1 Solution of the Neumann Problem

3.1.1 Formulation of the Neumann Problem

The Neumann problem to be discussed in this section can be formulated as follows:

297



(3.1) -(zu3'+51u + yu' =fin (0,1),

(3.2) -(au')(O) = c, (au')(1) = d.

Using the approach described in Section 2.2, Example 2.2, it can be shown that problem (3.1),(3.2)
has the following variational formulation

U 6 V,

(3.3)

a(u,v) =L(v), for every v r= V,

with

(3.4) V =H1(01

(3.5) a(v,w) =fcx(x)v'w'dx + .ft(x)vwdx + .f y(x)v'wdx, for every v, w r= V,
0 0 0

(3.6) L(v) =Jfvdx + dv(1) + cv(0), for every v E V

0

we assume here that f e L'(0,1), but indeed L(.) can be any linear continuous functional over

H 1(0,l1). Sufficient conditions to apply the Lax-Milgram Theorem to the variational problemn (3.3 3
consist of:

(3.7) 0 < a 0 : a c(x) :5a a.e. on (0, 1),

(3.8) 0 < 3os S ((x) :5 P. a.e. on (0, 1),

(3.9) -y-E L2(0,1), 11 -y 11L2(0.,I) -,min( 0 ,b0 ).

3.1.2 Wavelet- Galerkin Approximation of the Neumann Problem

Let N = 3 and let i be the corresponding scaling function as defined in Section 1. Let n be any
integer and let V. be defined as in Section 1. Define Vn(0,1) tube the restriction to of all functions in
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V. By Theorem 1.1, every function in HI(0,1) can be approximated arbitrarily closely by an element
in Vn(0,1) for sufficiently large n, hence

(3.10) Closure( W Vn(0,1))=H 1 (0,l).
n

Therefore, the family of subspaces V,,(0lI) of lHf (0,1) is well suited to the Galerkin solution of the
Neumann problem (3.1),(3.2),(3.3). The Galerkin formulation of the above Neumann problem for
every integer n is given by

un r= Vn(0,1),

(3.11)
a(un,v) = L(v), for all v r Vn(0,1).

Since (0,1) is bounded, the space Vn(0,1) is finite dimensional and is a closed subspace of H1'(0,1).
This implies problem (3.11) has a unique solution. It follows from (2.21) and (3.10) that

(3.12) limit (un - u) --> 0 in H'(0,1).

3.1.3 Solution of the Approximate Problem

Fix any integer n, the solution un of the approximate problem (3.11) can be represented as

p

(3.13) Un = I Un,kOn,k.2N+1, where p = 2n + 2N - 2 and u ,...,up e R,

k=l

where the functions are considered to be restricted to (0,1). This yields the following system of linear
equations in p unknowns

p

(3.14) E a(On,k.2N+I,nj.2N+l)Un,k = L(nj.2N+1), for every j = 1.
k=1

This can be written in matrix notation as

(3.15) AU=F
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with

(3.16) A = (aij), aij - a(nj2N+tOn,i-2N+I)

and

(3.17) F = (fi), fi = L(, i-2N+I)

and

(3.18) U = (UTO).

In the case where the bilinear form a(.,.) defined by (3.5) is 1. 1(0,1) - elliptic, the above matrix A is

positive definite implying that problem (3.15) has a unique solution. We shall also observe that if the
function g vanishes throughout (0,1) then the bilinear form a(.,.) is symmetric implying that problem
(3.15) can be solved by standard conjugate gradient algorithms or by Cholesky factorization.

Remark 3.1 The evaluation of the a i and fi in (3.16),(3.17) required to compute the solution of the

approximate problem (3.11) can be performed using standard numerical quadrature methods. In the

special case that the cc, 0, and y are piecewise polynomial then aj and fi can be exactly calculated as

rational functions of the scaling parameters h(k), k = 0,...,2N-1 using the techniques described in

Section 1.3.

Remark 3.2 Figure 3.1 illustrates the first derivative 0' of 0 corresponding to N = 3 evaluated at 321
uniformly distributed points over the interval [0,5] using the standard first difference approximation

0'(x) - [O(x+h) - 0(x)]/h. Since O' e C-08 7833 it is 'barely' continuous. Therefore, considerable care

must be taken to assure accurate evaluation of the aij and fi.

Remark 3.3 It follows from the Fredholm Alternative that problem (3.1),(3.2) is well posed if u = 0 is

the only solution of problem (3.1),(3.2) when f = 0 throughout (0,1) and c = d = 0.
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3.1.4 Numerical Experiments

We computed wavelet solutions for three instances of problem (3.1),(3.2):

Test Problem 3.1
For this problem

(3.19) c=d=0,

and the functions cc, 13, and y are described by

a(x) = 1 +x for 0 <x <.5,
(3.20)

CC(x) = 10 - x for.5 < x < 1,

(x) = 20- 10x for 0 < x < .5,
(3.21)

13(x) = 1 + x for.5 < x < 1,

(3.22) y(x) = 0 for 0 < x < 1.

The right hand side f was chosen such that the solution u of problem (3.1),(3.2) is

(3.23) u(x) = x3 /3 - x2 /2 +1;

indeed f e H-1(0,1) and over each interval (0,.5) and (.5,1) it can be represented by a polynomial,
however, at x = .5, it has both a 'jump' discontinuity and a Dirac measure component.

To solve this problem we chose N = 3 and n = 3 in (3.13) to obtain an approximate problem
(3.11),(3.15) involving p = 12 unknowns. This linear problem was solved using a Cholesky

factorization technique (permitted here since y = 0 over (0,1) implies a(.,.) is symmetric). Figures

3.2(a) and 3.2(b) illustrate the coefficients cL(x) and 1(x) over (0,1); Figure 3.3(a) illustrates the
comparison between the exact solution (dotted graph) and the com-,uted solution (solid graph). Figure
3.3(b) illustrates the variation of the error e, = u-un over (0,1). We observe from Figures 3.3(a) and

(b) that eis small over (0,1) and does not exhibit any special behavior at x = .5 (where a, 13 and f

are discontinuous and/or singular).
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Test Problem 3.2
For this problem

(3.24) c=landd=0,

and the functions a, 13, and y are described by

a(x) = 1 + x for 0 < x < .5,

(3.25)
at(x) = 2 + x for .5 < x < 1,

13(x)=I+x 2  for0<x<.5,
(3.26)

[(x) = 2 + x for.5 < x < 1,

'(x)= 1 + x for 0 < x <.5

(3.27)

y(x)= 2 - x for0<x < 1.

The right hand side f was chosen such that the solution u of problem (3.1),(3.2) is

(3.28) u(x) = x -x2/2;

again f e H-1(0,1) and exhibits the same qualitative behavior at x = .5 as in the previous test problem.

To solve this problem we chose N = 3 and n = 4 in (3.13) to obtain an approximate problem

(3.11),(3.15) involving p = 20 unknowns. Since y * 0 over (0,1) the matrix A in (3.15) is non

symmetric. Therefore, this linear problem was solved using an LU factorization technique. Figures

3.4(a),(b),(c) illustrate the coefficients ct(x), 13(x), and yKx) over (0,I); Figure 3.5(a) illustrates the

comparison between the exact solution (dotted graph) and the computed solution (solid graph). Figure
3.5(b) illustrates the variation of the error en = u-u n over (0,1). We observe from Figures 3.5(a) and

(b) that, as in the previous example, en is small over (0,1) and does not exhibit any special behavior at

x = .5.

Test Problem 3.3

This test problem concerns the solution of the following one dimensional Neumann problem

(3.29) -u" + u = (1 + 7t2)sinnx + 1 on (0,1),
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(3.30) -u'(0) = u'(1) = _2,

whose exact solution is given by

(3.31) u(x) = sinxx + 1.

We have solved problem (3.29),(3.30) using the wavelet based method described in Sections 3.1,3.2,
taking N = 3 and m = 3,4,5,6,7, the corresponding values of p being then 12,20,36,68,132. We took
advantage of these various calculations to study the influence of m (and p) on the approximation error;
therefore in Figures 3.6(a) to 3.6(e) we have plotted the variation of en = u - un on (0,1). In Figure 3.7
we have shown on a log-log scale the variation of ilen11l as a function of p (=p(n)) showing that the
above error varies approximately like p-2.5. This behaivor suggest that the above appproximation is
between piecewise linear and piecewise quadratic approximation.

3.2 Solution of the Dirichlet Problem

3.2.1 Formulation of the Dirichlet Problem

The Dirichlet problem to be discussed in this section can be formulated as follows:

(3.32) -(ccu')' + Ou + yu' = f,

(3.33) u(0) = c, u(1) = d;

we suppose here that f e H-1(0,1).

Consider v E Holt(0,1) ( = (v : v e H1(0,1), v(0) = v(1) = 0)); then multiplying (in the sense of
the duality pairing) both sides of equation (3.32) by v we obtain

1

(3.34) f (cau'v' + P3uv + yu'v)dx = <fv>, for every v s H0
1(0,1).

0

Suppose that problem (3.32),(3.33) has a solution u in Hi(0,1); then u necessarily satisfies the
following variational condition

u e Hi(0,1), u(0) = c, u(1) = d,
(3.35)

a(u,v) = <f,v> for every v e Ho1(0,1).
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In (3.35) the bilinear form a(.,.) is defined by (3.5). Actually, (3.35) implies (3.32),(3.33). Suppose

that conditions (3.7)-(3.9) on the functions a, b, g are satisfied, then we can easily prove that the

bilinear form a(.,.) is continuous and H0t(0,1) - elliptic over Ho 1(0,1)xH 0
1(0,l). This implies that

any solution of (3.32),(3.33),(3.35) is necessarily unique. Io prove the existence of a solution we

shall use again the Lax-Milgram Theorem. To overcome the (small) difficulty associated to the fact that

unless c = d = 0, u e Hot(0,1), we introduce the functions u0 and w defined by

(3.36) u0(x) = c + (d-c)x,

and

(3.37) w = u - u0.

The function w is clearly a solution of the following variational problem

we H01(0,1),

(3.38)

a(w,v) = <fv> - a(u 0,v) for every v e H0t(0,1).

From the properties of a(.,.) the right hand side of equation (3.38) depends linearly and continuously

on v E H01(0,1). We can therefore apply the Lax-Milgram Theorem to problem (3.38) to obtain a

unique solution w. Combining (3.37),(3.38) we have thus proved the existence of a solution u to
problem (3.32),(3.33),(3.35) (uniqueness was already established).

Remark 3.4 Using the fact that the serninorm defined by IIv'lL2(O, 1) is a norm

over H0t(0,1), equivalent to the standard HI(0,1) - norm, problem (3.32),(3.33),(3.35) is still well

posed if we assume for example that 13 = 0 over (0,1) and y = constant over (0,1), relation (3.7) being

still satisfied.

3.2.2 Reduction of the Dirichlet Problem to the Neumann Problem

There are various ways of solving Dirichlet problems using variational methods. Two fairly

classical methods are the following:

(i) Approximate HI(Q) by a finite dimensional subspace Vh, then decompose Vh as follows:
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(3.39) Vh=VOh9Mh

where VOh approximates H0 (Q), then construct a function u., e Mh that satisfies (approximately) the

Dirichlet boundary condition. Finally, introducing wh = Uh - uyh reduce the approximate Dirichlet

problem to a variational problem in VOh. This follows the approach discussed in Section 3.2.1 to solve

via (3.36)-(3.38) the Dirichlet problem (3.32),(3.33),(3.35). The construction of u t in dimension _> 2

may be a complicated problem in itself for some types of approximations.

(ii) Reduce the solution of the Dirichlet problem to the solution of Neumann problems using boundary
multipliers and/or penalization of the Dirichlet condition. This approach is used in some sense in
production finite element codes for solving elliptic problems.

In this paper we will focus on the second approach since it provides a possible methodology for
solving multidimensional elliptic problems. However we will also briefly comment on the first

approach which seems to be more technically involved and will be discussed in more detail in a

forthcoming paper.

In order to describe approach (ii) we consider the following abstract Dirichlet problem in HI (0,1):

u E Hi(0,1), u(0) = c, u(I) = d,
(3.40)

a(u,v) = <fv> for every v e H01(0,1),

where f e H-1(0,1) and where the bilinear form a(.,.) is continuous and elliptic over H'(0,1) (the case

where a(.,.) is elliptic over H01(0,1) but not over HI(0,1) will be addressed later), then by the Lax-

Milgram Theorem, problem (3.40) is well posed. Denote by L: Hi(0,1) --> R a linear continuous
functional satisfying

(3.41) L(v) = <fv> for every v e H010,);

such a functional always exists by the Riesz Representation Theorem. To the Dirichlet problem (3.40)
we associate the following problem:

(3.42) {u, X) e HI(0,1)xR 2; X = {X I, X2},

(3.43) a(u,v) = L(v) + Xv(0) + X v(l), for every v E Hl(0,1),

(3.44) u(O) = c, u(l) = d.

Suppose that problem (3.42)-(3.44) has a solution (u,X); taking v r H,1 (0,1) in (..43) it follows
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from (3.41) that u is also the solution of (3.40). We shall now show problem (3.42),(3.44) can be

reduced to the solution of 3 Neumann problems and to that of a 2x2 well posed linear system. Define

u0,u,u 2 as the solutions of the following variational problems in HI(0,1):

u0 e HI(0,1),

(3.45)

a(uo,v) = L(v), for all v e HI(O,1),

U, r HI(0,1),
(3.46)

a(u1 ,v) = v(O), for all v e Hi(0,1),

u2 e Hi(0,1)
(3.47)

a(u2,v) = v(1), for all v e HI(0,1).

The function u in (3.42)-(3.44) necessarily satisfies

(3.48) u = u0 + %.ul + X2u2

implying that X satisfies

ul(0)7'1 + u2(0)X2 = c - U0 (O),
(3.49)

ul(1)XI + u2(l)X = d - uo(l).

If (3.49) has a solution (X,x2) - X then the pair (uo + X uj + X2 u 2 , X) is a solution of (3.41)-

(3.44). To show that (3.49) has a solution we shall verify that the matrix

I u() u2(0) I

(3.50) A= I I
I u1(l) u2(1)I

is positive definite; to show this property take g± (IIX 2 } e R2 and associate to g± the function u,,

defined by
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(3.51) u. = 4Lu, + 112 U2 .

The function u is clearly the unique solution of

ut 4 HI(O,I),

(3.52)
a(ut,v) = 1ttv(O) + R2v(l), for all v e HI(0,1).

We also have, from (3.50)-(3.52) and from the ellipticity of a(.,.)

(3.50) Ag.t = l,u(0) + g2ut(l) = a(u,,u,) 0 for all 4 e R2.

Suppose now that A4. = 0, then (3.50) and the HI - ellipticity of a(.,.) implies that ut 0 over

(0,1), this fact and (3.52) implies i9t = 2t2 = 0. Matrix A being positive definite is regular and

therefore X = (XX2) is uniquely determined from (3.49). In fact we have proved that problem (3.40)
and (3.41)-(3.44) are equivalent.

Remark 3.5 If the bilinear form a(.,.) is symmetric then problem (3.40) is equivalent to the
minimization problem

(3.54)

J(u) J(v), for every v e Vd.

where Vc.d = (v: v e H'(0,1), v(0) = c, v(1) = d) and J(v) = (t/2)a(v,v) - L(v).

Furthermore, the pair (u,X), which is a solution of (3.41)-(3.44), is a stationary point over
H' (0,1 )xR 2 of the following Lagrangian functional

L(vj) = J(v) + gt(v(0)-c) + p,(v(I)-d).

The vector X is therefore the Lagrange multiplier associated to the two linear constraints v(0) - c = 0,
v(l) -d = 0. In the nonsymmetric case we shall still call X a multiplier. The (important) case where the

bilinear form a(.,.) is Hi(0,1) - elliptic can be treated by a similar approach. We shall suppose for
simplicity that

(3.55) a(v,v) y IIv'l1L2(0,1) for all v e HI(0,1) with ' > 0.
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In that case, instead of (3.41)-(3.44), we associate to (3.40) the following problem (with r > 0):

(3.56) (u,) .) H'(0,1)xR2 ; X = [XV,

(3.57) a(uv) + rfu(0)v(0) + u(l)v(l)] = L(v) + X v(0) + Xv(l),for all e HI(0,1),

(3.58) u(0) = c, u(1) = d.

Define a,(.,.) by

(3.59) a,(v,w) = a(v,w) + r[v(0)w(0) + v(l)w(l)];

it follows then by (3.55) that

(3.60) a;(v,v) > 7(jv'1IL2(O1)) 2 + r(Iv(0)12 + Iv(1)12);

since it can be (easily) shown that v --> [(iv'1VL2(O,))2 + Iv(0)12 + Iv(1)12] 1/2 defines over HI(0,1) a
norm equivalent to the usual H1(0,1) - norm. It follows from (3.60) that if r > 0 the bilinear form
ar(.,.) is H1(0,1) - elliptic. From this property we can easily prove that problems (3.40) and (3.56)-

(3.58) are equivalent; also, the pair {u,X can be obtained through the solution of 3 'Neumann'
problems associated to the bilinear form ar(.,.) followed by the solution of a 2x2 linear system
associated to a positive definite matrix. The wavelet implementation of this technique is discussed in

Section 3.2.3.

3.2.3 Numerical Experiments

We computed wavelet solutions of three instances of problem (3.32),(3.33).

Test Problem 3.4 For this problem u(0) = 0 and u(l) = 5/6; on the other hand a and D3 are given by
(3.20) and (3.21), respectively, andy = 0. The right hand side f has been chosen such that the solution
u of problem (3.32),(3.33) is

(3.61) u(x) = x3/3 - x2/2 + 1.

To solve this problem we chose N = 3 and n = 3 in (3.13) to obtain an approximate problem involving
12 unknowns. The maximum norm error between the exact and computed solutions is 1.2 x 10-3,

while the boundary conditions are exactly satisfied as we can ree in Figure 3.8 where both exact and
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computed solutions are represented. As one can see our procedure for treating the Dirichlet condition
via the solution of Neumann problems (see Section 3.2.2) is fairly accurate, particularly in the
neighborhood of the boundary points 0 and 1.

Test Problem 3 5 For this problem we have u(0) = 0, u(1) = .5 and a, b, and g defined by
(3.25),(3.26) and (3.27), respectively. The right hand side f has been chosen such that the solution u
of problem (3.32),(3.33) is

(3.62) u(x) = x - x2/2.

To solve this problem we chose N = 3 and n = 4 to obtain an approximate problem involving 20
unknowns. The maximum norm error between the exact and computed solutions is 6.0 x 10-4, while
the boundary conditions are exactly satisfied as we can see in Figure 3.9, where we compare the exact
and computed solutions, and in Figure 3.10, where we have shown the variatiojn of the error on [0,1].

Test Problem 3.6 This test problem concerns the solution of the following one dimensional Dirichlet
problem

(3.63) -u" + u = (1 + 7r2)sin7cx + 1 on (0,1),
(3.64) u(0) = u(1) = 1,

whose exact solution is given by

(3.65) u(x) = sinirx + 1.

We have solved problem (3.63),(3.64) taking N = 3 and m = 3,5,6, the corresponding values of p
being then 12,36,68. We took advantage of these various calculations to study the influence of m (and
p) on the approximation error. Figures 3.11 (a) to 3.11(c) shows the variation of en = u - un on (0,1)
for m = 3,5,6 respectively.

4 Solution of Singularly Perturbed Linear Elliptic
Problems

We consider in this section the wavelet solution of a particular one dimensional Dirichlet problem,
namely

(4.1) -eu" - u'= 1 on (0,1)

(4.2) u(O) =u(1) =0,
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with e > 0. We shall focus our attention to the cases where e is 'small'. The exact solution of problem

(4.1),(4.2) is given by

(4.3) ug(x) = (l-x) - [exp((l-x)/)-l1] / [exp(li/e)-l];

for small values of e it exhibits a boundary layer of thickness of order e in the neighborhood of x = 0.

The solution u,(x) has been shown in Figure 4.1 fore = 1/710.

Our motivation with this example is to study the ability of wavelet approximations to represent stiff
gradient phonomena such as those occuring in fluid mechanics and semiconductors for example.

In order to solve problem (4.1),(4.2) using the wavelet techniques discussed in Section 3 we split
the interval (0,1) into (O,x,) and (xc,l) with 0 < xc< 1. The idea here is to take xc small and to solve
problem (4.1),(4.2) using a domain decomposition method; the subproblem associated to (0,x,) will
treat the boundary layer behavior of the solution near x = 0 while the subproblem associated to (x,, 1)
will describe the smoother component of u,(x). The local solutions are matched at x, using a multiplier

method which will force the continuity of local solutions and of their first order derivatives at x = xc
(see [Bourgat, Glowinski, LeTalec, Vidrascu, 1989] for further details concerning domain
decomposition techniques in multidimensions containing the one used here as a special case).

Problem (4.1),(4.2) has been solved for e = 1/710 with x, = 1/32 using first a combination of 20
basis functions in (O,x,) and 35 in (x.,1) and then using a combination of 36 and 35 basis functions in
(O,x,) and (x,,1) respectively. The corresponding results are shown in Figures (4.2)-(4.4). Observe
that the wavelet solutions accurately approximate the behavior in the boundary layer despite the fact
that in our calculation x, was indeed of the order of 4e instead of e, reflecting the super-linear
approximation properties of the Daubechies wavelets.

5 Multigrid Solutions of Linear Elliptic Problems with
Periodic Boundary Conditions

In previous sections we discussed wavelet solutions of problems obtained by directly solving the
system of algebraic equations resulting from discretization. Frequently in practice, these algebraic
equations are so large as to require the use of iterative methods that apply a sequence of relaxa,.,wn
operations to improve the current estimate v. Typical relaxation operations, including Gauss Seidel,
Jacobi, Successive Over Relaxation, and Preconditioned Conjugate Gradients, have a tendency to
dampen high frequency components of the error at a faster rate than the low frequency crnponents.
This phenomena may result in slow convergence. Multigrid methods, described in !Brandt, 1977],
(Briggs,1987], (Fedorenko,1961,1987], and [McCormick,1987], address this problem by utilizing
relaxation methods at multiple scales of resolution to balance the dampening across all frequency
components of the error. Multigrid methods can utilize diverse relaxation tochniques and various
spatial discretiration methods, including finite differences and finite element.
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The multiscale properties of general wavelets, as described in [Mallat,1987] and
[Meyer,1985,198 6 ,198 8], together with the superior approximation and computational properties of
the specific class of Daubechies wavelet bases described in Section 1, suggest that the Daubechies

wavelet bases may provide an effective tool for developing improved multilevel methods. This section

describes preliminary theoretical and numerical results for wavelet based multilevel methods applied to

a simple class of model problems.

5.1 Multilevel Solutions

The linear elliptic equation to be discussed is given by

(5.1) Au=f,

where A is a linear strongly elliptic differential operator of order 2 and where A, u and f are periodic

with period 1. Let N > 3, therefore 0 r HI(R) and for all n > 0 let V = HI(Rp) and V - Vn = Vn(Rp)

be defined as in Section 1.3.3. Since the operator A is strongly elliptic, it is an isomorphism from V

onto V* = H-I(Rp) and therefore there exists a unique solution to problem (5.1) if f e V*.

Let Pn denote the projection of V onto Vn.Since V* = V = V n, Pn* projects V* into Vn*. For

every n 0 the approximation of problem (5.1) corresponding to the subspace Vn is

(5.2) Au = Pn*(f).

where A. = P,*A Pn and un = Pn(u). Clearly, by the Lax-Milgram theorem problem (5.2) has a unique

solution un which, by property (2.18), satisfies II un -u II IAll 1111 v - u i for every v e Vn, where

all the norms are with respect to V = HI(Rp). By inequality (1.31) it follows that I un - u II is on the

order of hN I where h = 2"n corresponds to the "step size" of the approximation. Thus the H 1 norm of
the error has order N- 1. If the coefficients of the operator A are "smooth" and if f e L2 then it may be

shown that u e H2 and furthermore that the L2 norm of the error u. - u may be of order as high as N.

This conclusion does not hold in general.
Throughout the remainder of this section we assume that A has constant coefficients and that

f e L2 , therefore by the preceding remarks the L2 norm of the truncation error has order N. We will
proceed to describe the full multigrid V-cycle method (here we use the terminology in [Briggs,1987]).
First, we choose integers nf > no Z 1 which correspond to the finest and the coarsest levels of

approximations to problem (5.1). The solution of the approximate problem (5.2) for n = no will always

be solved using a direct method. The first step of the algorithm consist of computing the solution v0 of

problem (5.2) for n = no.Next, we increment n <-- n+1 and choose v.., (e V. ) as the initial guess

for the solution of problem (5.2) at level n (this requires calculating the expansion of vn in a new basis
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of Vn, using the Mallat transform T defined by equation (1.34)). Next, apply a V-cycle relaxation
operation to improve the estimated solution vn of problem (5.2). In this paper we discuss the V-cycle

procedures based on Jacobi relaxation techniques. The Jacobi relaxation operators are defined by the
following affine mappings Ji: Vn --> Vn, for i = 1, 2

(5.3) Linear Jacobi Relaxation v, <-- J1(v,) = vn+crn.

(5.4) Ouadraic Jacobi Relaxation vn <-- J2(vn) = vn + c r+ dAnrn.

where in (5.3),(5.4) the residual r. is defined by

(5.5) rn = Pn*(f) - Anvn ;

here Vn* is identified with Vn so that rn 6 Vn. In (5.3),(5.4) the constants c and d are optimally
chosen as follows:

First define (in the sense of [Briggs,1987]) the set of the oscillatory eigenvalues of the operator An

(where as above Vn* is identified with V, so that A, maps V, to itself) by

(5.6) A = {a^(n,wo) : 7/2 < o < 31c/2);

as in equation (1.54), and then define %I and 72 by

(5.7) X1 = min X: Xe A), andX2=max (: X e A.

The constants c and d and their corresponding dampening ratios D (over the set A) for the above
Jacobi relaxation procedures are given by

(5.8) Linear Jaco : c = 2/(%+) 2), D = (%2-%j) / (XI+7,2 ),

(5.9) Q adratic Jacob: d = -2 / [X +(X +X2) 2/41, c = -d(0, +X2), D = ()2-X) 2/[(QI +))2 +4XI %+].

If A = -d2/dx 2 then D = 1/3 for the linear Jacobi relaxation procedure (5.3) applied to the standard

finite difference approximation of problem (5.1); on the other hand we have D = 2/3 if (5.3) is applied
to the (N=3) wavelet approximation of problem (5.1). Concerning the quadratic Jacobi relaxation

procedure (5.4), it yields D =.315 for the (N=3) wavelet approximiation of problem (5.1); indeed we
obtain an even smaller dampening ratio D = 1/17 for the finite difference approximation of problem
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(5.1), but the increased complexity of the corresponding algorithm is such that only the linear
procedure (5.3) is used in practice for finite difference approximations (on the other hand procedure
(5.4) is computationally advantages for (N=3) wavelet approximations of (5.1)).

The first step of the V-cycle Jacobi relaxation consists of applying either (5.3) or (5.4) to the initial
guess vn so as to dampen the oscillatory components of the error en = u, - vn to within truncation

error. Under the assumptions on A and f above, the truncation error for wavelet approximations of

problem (5.1) satisfies I e +, 1 = 2 -N i en, 1I (to be compared to II en 1 I = 2 "2 II en II for finite difference

approximations), therefore it is necessary to apply approximately -N / log2 (D) Jacobi iterations to
Ndampen all of the oscillatory eigenfunction components of the error by a factor of 2" . The second step

of the V-cycle Jacobi relaxation procedure consists dampening the non-oscillatory components of the
error as follows:

(i) Calculate the projection Pn.1 (rn) of the current residual onto Vn.i (this requires calculating the

inverse Mallat transform T-1 defined by equation (1.35)).

(ii) Solve the residual equation

(5.10) A..1 e.. i = P. 1 (r.).

(iii) Update the estimated solution vnby

(5.11) v, <-- vn + e 1n. :

observe that this requires calculating the expansion of en.1 in the basis for Vn using the Mallat

transform T defined by equation (1.34). In practice step (ii) will consist of v, iterations of the linear or

quadratic Jacobi relaxation procedure; also in step (iii) the update (5.11) will be followed by p,
iterations of our chosen relaxation procedure. Furthermore, in step (ii) the procedure described by step
(i) is applied recursively to the estimate obtained after Jacobi relaxation in order to dampen the
remaining non-oscilatory error components.This results in a complete V-cycle in the traditional sense
(cf., e.g., (Briggs,1987J) that starts at level n > n0 , then descends to level no , and finally proceeds

back to level n+l. This V-cycle is then repeated until the finest level nf is reached.

Comparing he total number of arithmetic operations required to achieve an L2 error equal to e
using various full multigrid V-cycles for solving problem

(5.12) -u"+u=f on(0,1),

(5.13) u(O) = u(1), u'(0) u'(1),
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we obtain (with P 1 
=  E7/ and P2 

= E"11)

Finite Difference Linear Jacobi #operations = 45 P1

Wavelet Linear Jacobi #operations - 12N(4N-2) P2

Wavelet Quadratic Jacobi #operations - .7xl2N(4N-2) P2

which shows that for wavelet approximations the quadratic Jacobi relaxation procedure is more

advantageous than the linear one, both being superior - for "small" S - to the linear Jacobi relaxation
procedure applied to the finite difference approximation of problem (5.1) ( at least if N _ 3 , which is
always the case in practice).

5.2 Numerical Experiments

In this section the multilevel methods discussed in Section 5.1 have been applied to the practical
solution of problem (5.12), (5.13) for f given by

(5.14) f(x) = sin27'x + sinlOix.

For the right hand side (5.14) the exact solution of problem (5.12), (5.13) is given by

(5.15) u(x) = sin27cx /(I + 47 2) + sinlOrcx / (1 + 100x 2 ).

The variations of f and u are shown in Figure 5.1.
First, with h = 1/I we have used the following finite difference scheme to approximate problem

(5.12)-(5.14) by

(5.16) -(ui+1 +ui. | -2ui)/h 2 +u i =f(x,), 1 Si I;

we force the periodicity of the solution by requiring in (5.16)

(5.17) u0 =u I ifi=1, and u1+1=ulifi=I.

The approximate problem (5.16),(5.17) has been solved using for h = 1/256 using a six level
realization of the general multilevel method described above. For this test problem we employed the
linear Jacobi relaxation procedure (5.3) with v, = , = 2. Figure 5.2 shows the computed solution Uh
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and the variation of the error u - uh over (0,1]; the max norm of the error is 3.3x10-6 .

Next we have considered the numerical solution of problem (5.12)-(5.14) by a combination of
(N=3) wavelet approximation and the multilevel methods of Section 5.1. We have compared the
performance of the linear and quadratic Jacobi relaxation procedures using in both cases nf = 6 and

no = 3 resulting in 4 levels; this corresponds to dim Vn = 2", 3 < n 6. In both cases we have used

vn = p, = 4. Figures 5.3 (linear Jacobi) and 5.4 (quadratic Jacobi) illustrate the computed solution u6

and the corresponding error u - u6 . The respective maximum norms of the errors are 9x 10-6 and

3.6x 10-6. These results indicates the superiority of the methodology combining wavelet approximation

and quadratic Jacobi relaxation procedures.
Experiments concerning the multilevel wavelet solution of multidimensional boundary value

problems are in progress and will be reported in a forthcoming article.

6 Parabolic Problems

This section discusses initial value problems of the following form:

(6.1) au/at + Au = ffor t > 0,

and

(6.2) u(x,0) = uo(x).

where A is a (possibly nonlinear) elliptic operator in the space variable x. For simplicity we will

assume that A, u and f are periodic in x with period 1. In contrast to the ordinary differential equations

treated in previous sections, a temporal as well as a spatial discretization is required. As prototype

problems of this class we shall focus on the linear heat equation (where A = -D2/1x 2 ) and the

regularized Burgers equation (where Au = _V a 2u/ax2 + uau/ax). Various finite difference time

discretization schemes will be combined with wavelet space approximations to solve the above two
problems.

6.1 Solution of Heat Equation

6.1.1 Formulation of the Problem

We consider in this section the numerical solution of the following heat equation

(6.3) au/at-d2u/x 2  f fort>Oandxe (0,1),
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(6.4) u(Ot) = u(1,t), u(Ot) / Ox = au(1,t) /ax,
(6.5) u(x,O) = u0 (x).

Denote the functions x --> f(x,t) and x --> u(x,t) by f(t) and u(t), respectively. It is assumed that, for

almost every t>0, f(t) e V* = I1 (R,) and u(t) e V = H' (R,) (where V and its dual space V* are

defined as in Section 1.3.3). A variational formulation is obtained by multiplying equation (6.3) by

v e V and integrating by parts with respect to x. This yields
1

(6.6) <au/t ,v> + f "'x dv/dx dx = < f, v >, for every v E V,
0

where, in (6.6), <. ,. > denotes the duality pairing between V* and V which reduces to the L2 scalar

product when both arguments are in L2 .

6.1.2 Wavelet Approximation and Time Discretization of Problem (6.3)-(6.5)

Let N 2t 3, let n 2t 1 and let V, = Vn(Rp) be the suspace of V = H1 (Rp) as defined in Section 1.3.3.

Using relation (6.6) as a guideline, we approximate problem (6.3)-(6.5) by the following problem:
Find a function un(t) satisfying for almost every t > 0

1 1 1

(6.7) J Du(t)/9t v dx+J u(t)/ax dv/dx dx= f f,(t)v dx,for every v E Vn,
0 0 0

(6.8) u,,(O) = uo,

where uO, is the L2 projection Pn(uo) of the initial data u0 on Vn and where fn(t) = Pn *(f(t)) is the

projection of f(t) on Vn* (identified with Vn; indeed, fn(t) is the unique element of Vn satisfying
1

f f,(t) v dx = <f(t), v>, for all v e Vn).
0

Problem (6.7)-(6.8) is equivalent to a system of first order ordinary differential equations obtained
by substituting v in (6.7) with the elements of a basis of V,. This system is equivalent to the
following initial value problem in V,

(6.9) aun/at + Au = fn for t > 0,

(6.10) un(0) =U0n.
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where An = Pn*A Pn is the Vn approximation of A = -/'2Rx2. Problem (6.9),(6.10) has the following

closed form solution
t

(6.11) un(t) = exp(-tAn) u0n + f exp(-An(t - s)) fn(s) ds.

0

For simplicity assume that f(t) and therefore fn(t) are differentiable. We use a time discretization of

problem (6.9),(6.10) that results from approximating the Taylor series for un(t+At) by the following

quadratic polynomial in At

(6.12) un(t+At) = un(t) + At [fn(t) - Anun(t)] + .5 At2 [f,(t)/at - An(f.(t) - Anun WA

This yields the following explicit time stepping scheme:

(6.13) un° = uon,

(6.14) Unk+1 = U k + At [fnk - AnUnk ] + .5 At2 [(af/at)k - An(fnk - Anunk)],

which is of Lax-Wendroff type. Comparison with the exact solution (6.11) shows this scheme is

second order accurate with respect to At Furthermore, it can be shown that this scheme is stable if and
only if

(6.15) At 52/Xrm,,

where -n .... denotes the largest eigenvalue of An. It can be shown using the same type of analysis
2n

done in Section 1.3.3 that for the (N=3) wavelet and for large n , knnax = (1/14)2 . Therefore,

stability of the wavelet solution of the heat equation obtained by the explicit time stepping scheme
above requires

(6.16) At 5 .143 h2

where h = 2"n corresponds to the space step size. The stability bound for the corresponding finite

difference (in space) scheme is .5h 2.

Remak 6.1 Scheme (6.13),(6.14) has the inconvenience of using the time derivative of f; also, in its
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present form, it is not well suited to the solution of nonlinear problems. Therefore in practice we shall
use the following Runge-Kutta form of the Lax-Wendroff scheme:

(6.17) un° = un,

then for k > 0, unk being known we compute unkl via

(6.18) wnk+'2 Un
k + .5 At (fk - AnUnk),

(6.19) Wnk+l = k+ At(fnk -Annk),

(6.20) unk2 = Wnk+ l 2 + .5 At (fnk+I - An Wn k+I).

Schemes (6.13),(6.14) and (6.17)-(6.20) coincide if f = 0 and their stability and accuracy properties
are the same, the last scheme being more practical for obvious reasons.

Remark 6. For many applications the stability condition (6.16) imposes a prohibitively large number
of time steps. For such cases we should choose an implicit time discetization scheme such as the one
used for the Burgers equation in the following Section 6.2. In the case of the heat equation (6.3)-
(6.35) this will lead to the solution at each time step of an elliptic problem for which the methods
described in Sections 3 and 5 still apply.

For more complete description and analysis of numerical methods for initial value problems for
differential operators one may consult, e.g., [Raviart, Thomas, 19831 and [Strikwerda, 1989] (see
also the references therein).

6.1.3 Numerical Experiments

The methodology described in Section 6.1.2 has been applied to the solution of the heat equation

(6.3)-(6.5) for f = 0 and uo(x) = 1 / (1 - .5 sin 2itx). Figure 6.1 shows the variation, over (0,1), of u0

and of the solution u at time t = .01.
Figure 6.2 compares, for t = .01, the exact solution of the heat equation (6.3)-(6.5) with the exact

solution Uh(t) of the ordinary differential system obtained from the finite difference space discretization
of (6.3)-(6.5), using h = 1/256. This error here is due solely to finite difference space discretization.

Figure 6.3 compares, for t = .01, the above semidiscrete solution Uh(t) with a fully discretized
finite difference solution vh(t) of heat equation (6.3)-(6.5) using the above Lax-Wendroff scheme,

with At = 5xl0 "6 (approximately the maximum stable step size). This error here is due to time

discretization since the space discretizations are identical).

Figure 6.4 compares the variation of the functions u0, Pn(uO) (for the N--4 wavelets), and un(.01),
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where here u,(t) is the exact solution of the semidiscrete heat equation (6.9),(6. 10); this figure has to

be compared to Figure 6.1.
Figure 6.5 compares, for t = .01, the exact solution u of the heat equation (6.3)-(6.5) with the

exact solution u, of the semidiscrete heat equation (6.9),(6. 10), (obtained from the N=4 wavelet spatial

discretization with n = 5, i.e. h - 1/32).
Figure 6.6 compares, for t = .01, u,, above with the fully discretized N=4 wavelet solution vn(t) of

heat equation (6.3)-(6.5) using the above Lax-Wendroff scheme, with At = 10 "4 (approximately the
maximum stable step size). Due to the fact that N--4 wavelets provide approximation having
comparable accuracy to finite differences, using fewer degrees of freedom (e.g. 32 < 256), the
maximum stable step size is significantly increased. This drastically decreases the required
computation. However, since the time steps are larger, a more accurate (than, e.g., first order forward
Euler) time stepping scheme is required to balance the high spatial accuracy provided by the wavelets.

Comparison of Figures 6.5 and 6.6 indicates that the Lax-Wendroff scheme provides this balance.

6.2 Solution of the Regularized Burgers Equation

6.2.1 Formulation of the Problem

In this section we will discuss the numerical solution of the Regularized Burgers Equation defined
with v > 0 by

(6.21) au(x,t)/t - u(x,t)au(x,t)x = v a 2u(x,t)/Rx 2 fort > 0 and 0 <x < 1,

(6.22) u(x,O) = u0(x),

completed by appropriate boundary conditions (Neumann, Dirichlet, periodic, ...) at x = 0 and x = 1.
Related problems arise in many branches of science and engineering particularly fluid mechanics ",id
petroleum resevoir simulation. Indeed this problem is idealy suited for formulating and evaluating new
numerical methods for eventually solving the Navier Stokes Equations.

6.2.2 Time Discretization of Problem (6.21),(6.22)

Let At > 0 be a time discretization step. We can discretize problem (6.21),(6.22) using, for
example, the following semi-implicit scheme:

(6.23) u =Uo,

then for k > 0 we compute uk+l from uk via
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(6.24) (uk+l - Uk) /At-ukauk if =V 2uk/, 2 on (0,1),

completed by boundary conditions at x = 0 and x = 1. Scheme (6.23),(6.24) is clearly semi-implicit
and at each time step it provides an elliptic problem similar to those discussed in Sections 3 and 5,
implying therefore, that it can be easily coupled to the wavelet based space approximation described
there. Numerical experiments indicates that Scheme (6.23),(6.24) has good stability properties (there
exist more sophisticated and accurate schemes; in this paper we limit ourselves to the above scheme
since it is well suited for feasibility studies).

6.2.3 A Space-Time Adaptive Wavelet Method for the Regularized Burgers Equation

Equation (6.21) is a regularized version of the inviscid Burgers equation obtained by taking v = 0.
It is a well known fact that the solutions of this equation may develop discontinuities (shocks) even if
the initial data u0 is very smooth. Indeed for small values of v the solution may develop very strong
gradients making the numerical solution of (6.2I),(6.22) a nontrivial problem. Various methods can be
developed to reproduce accurately the fast variation of the solution near the shock. Such methods
include adaptive mesh refinement, entropy control methods (see, e.g., tTadmor, 1989] and references
therein for shock capturing techniques). In this section we describe a space-time adaptive wavelet
method to solve the regularized Burgers equation; this method uses, at each time step k, a discretization
of problem (6.23),(6.24) based on a suitably chosen subset Sk of scaling functions and wavelets.
These scaling functions and wavelets will all belong to some subspace Vn (defined in previous
sections) for sufficiently large n. The basic steps of this adaptive method are:

Adaplive Method

(i) Discretize in space the elliptic problem (6.24) using a (N 3) wavelet subspace Vn where n

is chosen to be sufficiently large so as to represent accurately au/ax.

(ii) At each time t = kAt, compute an initial guess wavelet solution wnk~le Vn of problem

(6.21),(6.22) discretized in space using Vn and discretized in time by any
explicit method (e.g. Forward Euler or Lax-Wendroff) from the known solution u'k.

(iii) Use the inverse Mallat transform (recursively using equation (1.35)) to calculate coefficients

of the expansion of wnk+t in terms of a combination of scaling functions and wavelets.

(iv) Choose a subset Sk of the scaling functions and wavelets appearing in the expansion of

wnk+l in (iii) so that the corresponding truncated expansion is sufficiently accurate.
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(v) Calculate the solution uk+1 of Problem (6.23),(6.24) using the approximating subspace

spanned by Sk.

This method provides a dynamical in time sequence of Galerkin approximations of the elliptic
problems elliptic problem (6.24) for k 0.

6.2.4 Numerical Experiments

The first test problem is defined by taking v = 2x10 "3 in (6.21), u0 (x) = exp(-8(1-x)) and

(6.25) au(0,t) /ax = 0, u(l,t) = 1,

as boundary conditions. To solve the above problem we have been combining the semi-implicit
Scheme (6.23),(6.24) with a wavelet dicretization based on Vn with N = 3 and n = 6, implying 68
basis functions; the time discretization step At = 10"3 . The discrete Neumann-Dirichlet problems
occuring at each time step have been solved using the Lagrange multiplier technique described Section
3.2 to treat the Dirichlet condition at x = 0. Figure 6.7 shows the solution at times 0, .03, and .18;
illustrating the development of a quasi shock starting at t = .03 and fully developed at t = .18.

Lets describe now the second test problem:

For computational convenience we have taken 0 < x < 64 and assumed periodic boundary conditions

for u and ou /ax at x = 0 and x = 64. The viscosity parameter v has been chosen equal to .5 and the
initial value u0 is defined by the piecewise polynomial C1 function shown in Figure 6.8. This figure
also shows the solutions at 5,10,15,20,25, and 30 time steps computed using a finite difference in
space and in time discretization with 128 grid points (h = 1/2) and a time step At = .5. These accurate
solutions are used as a reference to which we compare our wavelet based soluticns.

Figure 6.9 shows (upper left) the finite difference solutions at 5,10,15,20,25, and 30 time steps
of this test problem computed using 64 grid points (h 1 1) and time step At = .5; and (upper right) the
corresponding errors (compared against the reference solutions). Also shown (lower left) are the
(N=3) wavelet solutions of this problem computed using n = 6 (64 basis functions - all scaling
functions) and a time step At = .5; and (lower right) the corresponding errors.

Figure 6.10 shows two sets of wavelet solutions at 5,10,15,20,25, and 30 time steps of this test
problem computed using (N=3) wavelet solutions of this problem using the space-time adaptive
wavelet method described in Section 6.2.3 with n = 6 and a time step At = .5. The top right shows the

solutions obtained using, for all k, a subset Sk of Vn consisting of 32 scaling functions and wavelets;
and the top right shows the corresponding errors. The bottom right shows the solutions obtained

using, for all k, a subset Sk of Vn consisting of 16 scaling functions and wavelets; and the bottom right
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shows the corresponding errors.

Comparing the errors shown in Figure 6.9 indicates that the wavelet discretization provides
accuracy comparable to finite differences with the same number of degrees of freedom if
approximation by scaling functions in Vn is used. The errors shown in the top right of Figure 6.10
indicates that approximation by a combination of scaling functions and wavelets can achieve the same
accuracy using significantly fewer degrees of freedom. However, the errors in the bottom right of
Figure 6.10 indicate that a significant reduction of accuracy can result if too few degrees of freedom
are utilized. We are currently investigating improved space-time adaptive wavelet methods.

7 Linear Advection Problem

This section discusses the following initial value problem:

(7.1) au/Dt =u/ax for t >0 and x e (0,1),

(7.2) u(1,t) =0 for t > 0,

(7.3) u(x,0) = uo(x).

7.1 Solution of Linear Advection Equation

We solved problem (7.1) using first an explicit Lax-Wendroff time discretization to obtain the
following semi discrete problem:

(7.4) u0 = u0 ,

(7.5) Uk+ = Uk + At ank/ax + .5 At2 a2 k/ax2 ,

followed by the wavelet space discretization to obtain the following scheme

(7.6) u10 = uO,

(7.7) )k+ l = uk + At Aunk + .5 At 2Bn 2un k,

where A, , B, represent the wavelet approximations of the operators A = o/ax and B = i2lx 2 by the

subspace V,. Scheme (7.6),(7.7) is stable for sufficiently small At > 0 (of the order of h).
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7.2 Numerical Experiment

Scheme (7.6),(7.7) was used to compute the wavelet solution of problem (7.1),(7.3) using N=3,
n = 6 (68 basis functions), and At = .001. Figure 7.1 shows the initial data (top) and the solution at
times t= .410 (middle) and t =.820 (bottom).

8 Further Comments and Conclusion

In this paper we have been exploring the potential of wavelet based approximations for the
numerical solution of boundary and initial value problems in one space dimension. For this class of
problems, wavelets compare favorably with finite element and finite difference approximation. Indeed
it is our opinion that wavelets share some of the computational properties of finite element and spectral
methods and that they are well suited for multilevel solution methods. The generalization to
multidimensional problems is nontrivial, particularly for curved boundaries; we think however that
combining fictitious domain methods methods with wavelets may lead to powerful algorithms for
fairly general two and three dimensional domains.
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DOMAIN DCOMOSIION NT300 FOR UNSTEADY COVECTION-DIPPUSION PROILENS

Yu. A. Kuznetsov

Department of Numerical Mathematics, USSR Academy of Sciences,

Moscow, USSR

Abstract - This paper deals with systems of linear algebraic equations arising in

application of the finite element method to elliptic boundary value problems with

singularly perturbed operators. These problems appear in utilization of implicit

difference methods for solving parabolic equations including unsteady convection-

diffusion problems. To solve FEN-systems, the paper suggests both iterative met-

hods with multilevel domain decomposition preconditioners (DD-preconditioners)

and non-iterative DD-methods with overlapping subdomains. The latter methods

exploit the property of fast exponential decay of grid Green's functions of

singularly perturbed elliptic operators. The justification and practical

implementation of the DD-methods suggested are discussed.

1. INTRODCTION

In recent years, the construction, justification and practical implementation of

domain decomposition methods (DD-methods) for solving partial differential

equations have been causing an ever-increasing interest among specialists in

numerical mathematics and mathematical modelling. The review of the up-to-date

results obtained In this field can be found in the Proceedings of the 1st and 2nd

International Symposium$ on Domain Decomposition Methods (5,61. A great progress

was made in constructing and justifying methods to solve elliptic problems

[2,3,7,8,11,13,14].

This paper suggests two types of algorithms of the DD-method for approximate

realization of elliptic difference schemes for unsteady convection-diffusion

problems.

327



The first group of algorithms is based on the standard Idea of exploiting a

positive definite preconditioner in the iterative procedure. For such

preconditioner the paper suggests to use the multilevel DO-preconditioner for a

symmetric positive definite elliptic operator (10], which is chosen spectrally

equivalent to the non-symmetric coercitive operator of the original problem.

The second group of DD-methods is based on a new idea of replacing the grid

problem in the original domain by a series of grid problems for subdomains of a

smaller size (9,12]. These subproblems being solved, a grid function is

constructed which approximates the grid function, solution of the original

problem, with a prescribed accuracy. Section 4 discussed mathematical faundations

for such replacement while Sections 5-7 consider specific versions of the

DD-method with overlapping subdomains and particular features of their

implementation.

2. PROBLEM FORNUIATION

Let Q be a two-dimensional polygonal domain with the boundary 30 and r be a

closed subset of 8Q, consisitJng of a finite number of segments of stright lines.

Let us consider the unsteady convection diffusion problem

u V(a~u) + l&Vu + cu = f In Q x (0; T]at

u 0 on 1' 1x (0;?']
(2.1)

8u
+ 6u = 0 on r' x (0:1 ,

2

u(0) - 0 in 0.

Here, T - coast > 0; r is a subset of SQ, consisting of a finite number of open
2

segments (r1 n r - o. r u r - so); V is the vector of the external normal to

r - (b b2); a, b2  , c , and U0 are given bounded plecewJse-smooth
2 1.b 2 ; b1  2I

functions. It Is assumed that a) - coast > 0 in 2 and 6) 0 on r.

Define V - (v: v a 1, v - 0 on r) as a subspace of the Sobolev space
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fIt with the same norm aI Il± and the bilinear form

a(u,v) = $ javu-vv + (-&Vu)v + cuv]dQ + .S 6uv dr. (2.2)

r2

We assume the form a(u,v) to be positive semi-definite on V.

Under the assumptions made, problem (2.1) can be formulated as follows: find
0

u m u(t) a V such that u(O) f u and for each t c (0;2J the following

identity is valid:

du

(g-tv) + a(u,v) = (fv) Vve V, (2.3)

where ( ) is an ordinary scalar product in the space L2 (.

Let Q2 be a triangulation of 12, such that r n r belongs to the set of
h 1 2

vertices of triangles from 0 and V be a standard piecewise-linear finite
gh h

element subspace of V (4]. Apply to solving problem (2.3) the simplest implicit

scheme of the first order accuracy in time with the FEM-approximatlon in spatial

variables. The discrete problem can be formulated as follows: for k = 1.

kfind functions k  V such that
hh

oh- 'h k yvh

At Vh  + a(uh. vh) (fvh) - Vh  
(2.4)

Here, At = 2/A, A is a positive integer and denotes an approximation of

0the function u

For the sake of simplicity, assume the funciton u0 to belong to V. Thenhhe

(2.4) can be replaced with another formulation of the discrete problem, which is
k k-i

more convenient for what follows: for k -.. find WI -U a u Vh

such that

k k.vh) + At.a(wh vh -At V (2.5)

where

Sa(u ,v) - (f,v) . (2.6)
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Problem (2.5)-(2.6) for each k 3 1 leads to the system of linear algebraic

equations

Aw - g (2.7)

with a positive definite (in the Euclidean space /N) iN matrix

A = N+ At'K (2.8)

and a vector R. Here. N is the mass matrix and K is a stiffness matrix

generated by the form a(u,v).

This paper is aimed at constructing methods of approximate solution of

system (2.7)-(2.8) which are based on the domain decomposition ideas. To this

end, we need auxiliary matrices.

Let us prescribed a symmetric elliptic form

;(u.v) = J [rvuovv+ "&v(uv) + 'cuv]dQ + I '6uvdr , (2.9)
Qr 2

whose coefficients i, b ; ' and W possess the properties similar to those
1, 2'

of the coefficients of the form a(u,v). We assume the form a(uv) to be

equivalent to the form a(uv) In the sense that

c,"(v,v) 4 a(v,v) 4 c2 ;(vv) Vve V. (2.10)

where c, and c2 are positive constants.

Using the relations

(u.,v) - ;(uhh,) V eh,v
h  

(u,ve RN) (2.11)

determine a symmetric ANN matrix I and prescribe the NkN matrix

M + N t . . (2.12)

It i obvious that

cl(V, v) (Kv, v) 4 c2 O, v) Vva RN, (2.13)

where c1 and c. are taken from (2.10). This implies In particular that if the

matrix K is positive definite (semi-definite), then the matrix I will be also 
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positive definite (semi-definite). In any case, the matrices A and A are

simultaneously positive definite.

Let us formulate some statements whose proofs are directly implied by the

above assumptions.

Statement 2.1 The following inequality is valid:

-CI(vv (Av,v) 4 c;2 (Av,v) Vv . RN, (2.14)

where Cl and c2 are positive constants.

Consider the eigenvalue problem

WA4v = Av . (2.15)

Statement 2.2. The eigenvalues of problem (2.15) belong to the rectangle

(c;c2 x(-d;dJ of complex plane, where c, and c2 are constants from

inequalities (2.14) and d is a positive constant,

Apply to solving system (2.7) the iterative method

(w- wj
-
') =-.YA 

- 1 - g) , J = 1,2 ... (2.16)

with a constant parameter a > 0. Then Statement 2.2 implies the following

Statement 2.3. There exists a(- const > 0 such that for any ia (O;e1

Iterative method (2.16) converges at the rate of geometric progression with the

factor qa q(a) = const < 1.

Remark 2.1. Here and henceforth, we mean constants independent of the grid

0 and of the quantity At. Obviously these constants can depend on the
h

coefficients of the bilinear forms, the geometry of the domain 0 and the

structure of the set rI.

Let us prescribe a symmetric positive definite DiN matrix B such that

1 (Bv, v) 4 (Iv,v) " (Bv, v) Vv0 RN, (2.17)

where '? and ^ are positive constants, and apply to solving system (2.7) the
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iterative method

B(Wf - Wr
j-

) = -4W ' - 
- g) . j 1,2.....(2.18)

with a constant parameter a> 0.

Under the assumptions made, the following statement is valid.

Statement 2.4. There exists -= const > 0 such that for any at (0; r]

iterative method (2.18) converges at the rate of geometric progression with the

factor q E q(ct) = conat < 1.

3. TWO-LEVEL DOMAIN DECOMPOSITION NBTHOD

In this section, we will construct a two-level DD-preconditioner for the matrix

A of system (2.7), which will satisfy conditions (2.17) of Statement 2.4.

To this end, we partition the grid domain Q into grid subdomains G G
h I~h' 2,h

and 63,h as shown in Fig.l. In other words, we assume that mes(G1,h n 9G3 b) 0 O

and each subdomain G is partitioncd into non overlapping subdomalns G{J )

. ,h'

J - 1...., m1, where m1 , I = 1.2 3, are positive integers. Obviously each of

0 1. h' = 1.2,3, is a union of triangles from Qh'

l 2.h / .h G2h ih

G G; G G/ 3h 2,h / 3,h 2,h

G2,h GI , h G2 0 G~

G, 3l 62 1

3G3, 2,h G2 ,h

Figure 1. Partitioning I? Into subdomains 0 , and 0

01 ,.h' G2,h 03, h

332

Aft-I



Let us partition the grid domain 12 into grid subdomains Q 1 ,h U 02,b

and 2. G3 h (see Fig.2) and denote by the boundary between the

subdomains . and Q i, e = 99 0 Q An 912 Then define the stiffness
1'h 2,h' a lh 2,b

matrices

/ , (3.1)

generated by the bilinear form (u,C) + .t.a(u,v) for the subdomains 01 and 2,b

which are considered as superelements of the grid domain Ph. It is obvious that

A A 0

)i(l) (2) A 1 A 1 2-A 
(3.2)

. . . ... . ... + A 2 ai 2

0 A A2

Finally, following the standard technique of domain decomposition methods with

alternating Neumann-Dirichlet boundary conditions [2,7,11,14) we define the AN

matrix C -3J

AB+AAA A

" I), -11+ 1212121 12 (3 3)

0 . . .. 2 2 1 2 2

where

A11 A),
- .(3.4)

Is the stiffness matrix for the subdomaln O,.9 We call the matrix b from

(3.3) the one-level OD-preconditioner for the matrix A from (3.2).
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L2,h 3 j

Figure 2. Partitioning ih Into subdomains Qlk = G1,h u G2,h and 02, = G3, "

h .h hhh h ,h 3,h

' hh 2 D

2h

Figure 3. Partitioning -Q Into subdomains Z~=0 and -S
b' allh b - G1.h 92,h - 2,hb

Continue the procedure of construction of the two-level DD-preconditioner.

To this end. set 2h= Q1, and - h Then partition 2h into two grid

subdomains '1. 01. hand 2,h" G2,h b (see Fig.3) with the common boundary

31b 901, n 902.h and define the stiffness matrices

A A [2)

4 j and (3.5)

generated by the bilinear form (u.v) + At-a(u.v) for the subdomains 2 and b
lk, .b334



which are considered as superelements of the grid domain Oh. It Is obvious that

Aij I 0

I~)~2 [-=A 1  (3.6)

A itA A 2

A^A

1 2 23.12

A21 A22 
0(

Finally, we define the matrix

B]I+A12A22A2 A12B (3.7)

A. 21 A22!

as the one-level DD-preconditioner for the matrix A from (3.6).

The resultlng two-level DD-precondtoner (1[0 for the matrix from (3.2)

will be defionehiy the formula

1+A2;'222 1 A2

B (3.8)

A 21 A 22

The elgenvalues of the matrices W-1;i and _B-1 are known to belong to the

egents [1;'] and [;,respectively, where 'a and f are positive Integers

greater than unity. It is easy to show (10] that in this case the eigenvalues of

the matrix BiF' belong to the segmlent [1;d] where d - 2a. Under certain

conditions In which the so-called extension theorem [1,15,16] Is valid, the

numbers 'a, and, hence, d are independent of the grid Q and the grid step

size At. Now we formulate some requirements imposed on the sizes of subdomains

jJ ) , under which the quantities ' and a will be independent of the grids.

For each of the simply connected subdomains (j )  we define Inscribed and
, h

circumscribed circles with the radii r(j)  and R( ) respectively. Assume that
i~h lhh

positive constants ot1 , a and i exist such that

'YI(At)m r
(

A) 
< R(J) 4 of, (At)a

J~h l1,h
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and for each subdomain G(J ) there exists its mapping onto the square with the
i.h

side length (At)8 which is given by a function from H, and has an inverse

mapping bounded by a constantS.

Under the assumptions made, the following statement is valid.

Statement 3.1. For any a 4 0.5 the eigenvalues of the matrix B-1A belong

to the segment [I;d, where d is a positive constant.

This statement and Statement 2.4 directly imply

Statement 3.2. If for the preconditioner B for the matrix A of system

(2.7) we choose the matrix B from (3.8) provided a 40.5, then there exists

w= comst > 0 such that for any ee (0;'] iterative method (2.18) converges

at the rate of geometric progression with the factor q a q() = const < 1.

4. GRID GREEN FUNCTION ESTIMATE

Statement 3.2 implies that for approximate solution of system (2.7) by method

(2.18) with accuracy cz (0;1) in the sense of the inequality

ic

Iwh - Wh'L 2(Q) e Cghll() (4.1)

being valid, it is sufficient to choose J - coln C-1, where co  Is a positive

constant.

Let be a subdomain of the mesh domain 0b and mupp 'h . Embed
Chb bh

9 into a subdomain BhP gh (see FIg.4) such that any

z - (x1.z2 ) *h.e -gh\bh, satisfies the Inequality

Plx;Qh) = sin Ix- Y) c(t) In C 1  
, (4.2)

where ^c Is a positive constant and a = 0.5,

Statement 4.1. Under the assumptions made, a positive constant ^ exists

such that W.= 0 for any xu Qh.C (see Fig.4).
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Figure 4. Interpretation of the behaviour of the grid Green function.

This statement and inequality (4.1) directly imply validity of the

Inequality

2(
I  g(Q) (, 4.3)

from which in case of regular meshes (h - N/2) we have

Wh Ic(Qh, 1E Ch -1  hIH() (4.4)

We have thus proved that when the distance from the point of location of the

source function increases the grid GreenIS function of the operator N + htK

decreases as exp(-const ly - xI/t). This fact is in complete harmony with the

results obtained before for the case of symmetric bilinear forms (9,12],

specifically for diffusion problems.

In practice, as a rule, one chooses C. (At) , where a a [1:2]. In this

case, the boundary of the domain lies away from the boundary of the domain

at the distance of order (At)R1n(At)- , which Is for small values of At
b

considerably less than the diameter of the domain 1.
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Figure 5. Partitioning 9. into subdomains GM I I,...,p.

Note that from the standpoint of the arithmetic cost of realization of one

step of method (2.18) It Is preferable to choose a = 1/2, i.e. to choose the

greatest value of a for which this method has the convergence rate with the

factor q independent of the grId .9h. There is no reason for supposing that if

the value of N is decreased, the convergence rate of method (2.18) can be

considerably improved.

5. NON-ITERATIVE DD-NETHOD WITH OVERLAPPING SUBDOMAINS

The previous section leads us to a new approach to constructing DD-methods for

approximate solution of system (2.8). This approach was anounced and Justified

for diffusion problems In [9,12]. Here, we will consider two versions of this

approach under the assumption that the grid Qh is regular.

Let us partition the grid domain 12 into p > I grid subdomains
h

(1) G(P as shown, for example, in Fig.5 and determine vectors - M

by restricting linear form (2.6) onto subdomains G(L), - I...,p. In other
hte

words, we determine functions (1 such that sup ht .

I - 1.....p, and L

338



The linearity of system (2.8) implies that

.( F (1).(51

where wo are solutions to the systems

Aw( 1)=g L -i1. . (5.2)

Our aim is to compute the vector w with accuracy C In the uniform norm, i.e.

to find the vector ei Nsatisfying the Inequality

Fix the value of L 3g I and embed the subdomain G~ M into the grid subdomain
h

heQ =such that all points X z\.(L satisfy the inequality

with a constant c (see Fig.6). Denote by A' the stiffness matrix for the

subdomain GM considered as a superelement and by (~h) the restriction of

the vector g onto the same subdomain, and consider the system

A( ~ g (5.5)

h, ch~

Figure 6. Embedding 6()Into Gt
kh.C
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Finally, denote by the vector from I whose restriction onto GM is
h. C

equal to the vector M( and onto QML, Is the zero vector.

Statement 5.1. There exists a value of the constant c from inequality (5.3)

such that the vector ;(I constructed above satisfies the inequality

I-W W( (5.6)

This Implies that the vector

N 1 t (5.7)
L-1

satisfies inequality (5.3), i.e. approximates the solution to system (2.8) with

accuracy C in the uniform norm.

Let us briefly discuss the other version of the approach to constructing

DD-methods with overlapping subdomains. Choose a subdomain G of the grid

domain Q and formulate the problem: find the components of the vector, the

solution to system (2.7), corresponding to this subdomain with accuracy C. In

other words, if we denote by we the restriction of the vector w onto the

subdomain 0, then it Is necessary to find a vector wo~e such that the

following inequality is valid:

IN - W6N I e C. (5.8)

To solve the problem formulated, embed the subdomain G into the subdomain

0h, such that the inequality

P(X.Oh) c(At)l/2n(ch 1 (5.9)

Is valid for any point x ah, - ,. Then denote by 2C the stiffness

matrix for the domain %., and by g the restriction of the vector on the

right-hand side of system (2.7) onto the same subdomaln, and consider the system

c SC
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Finally, denote by w0  the restriction of the vector N^ onto the subdomain

G h

Statement 5.2. There exists a value of the constant c from inequality

(5.9), such that the constructed vector wG C satisfies inequality (5.8).

It is obvious that choosing various subdomains G of the domain Q In a
h h

successive or parallel way we can compute all the components of the vector, the

solution to the system (2.7). with a given accuracy. When solving problems for

subdomains we can use different direct and iterative methods. The estimates of

the total computational cost in case of the diffusion problem and rectangular

piecewise-uniform meshes were given in [9].

6. CONVECTION-DIFFUSION PROBLEMS FOR SUBDOKAINS

In DD-methods with overlapping subdomains considered in the previous section, it

is necessary to solve repeatedly convection-diffusion problems in subdomains of a

small size. Below, we will note a characteristic property of such problems which

enables us to construct very efficient computational algorithms to solve them.

For the sake of simplicity, we confine ourselves to considering the

differential problem in the square G with the side length (At)a, where

Eu (0;1/21. Thus. let us consider the equation

w + At-(-7(aw) + .Vw] - g in G
(6.1)

w N 0 on OG

provided dlv - 0.

Map the square 0 onto the unit square 0 . i.e. introduce new variables

- (dt)-*. As a result, we arrive at the differential problem

* (At) -2#r ; (Ae)". .J -[v in o (6.2)

0-o on ao0
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This implies that with respect to small subdomains the role of the convection

term in equation (6.1) becomes considerably less as compared with the diffusion

term than with respect to the original domain.

Apply to solving the system

Aw = g (6.3)

arising as a result of the FEN-approximation of the problem (6.1) the iterative

method

B(wj - v') = -(Aw.J-_ g) , j = 1,2......(6.4)

I Twith a constant parameter o> 0 and the matrix B = !(A + AT).

Statement 6.1. Under the assumption made, there exists wr= const > 0 such

that for any cf (O;a'] method (6.4) converges at the rate of geometric

progression with the factor q = c(At) < I, where c is a positive constant.

To solve system (6.3). it is thus possible to suggest different iterative

methods with the preconditioners B spectrally equivalent to tIe matrix A + AT.

In this case, the smaller the diameters of the subdomains G., the faster the

convergence rate of the method.

7. CONCLUSION

Since this paper does not contain proofs in detail and considers only

two-dimensional problems, we would like to make some comments.

The fact of exponential decay of grid Green's function of the matrix

N + At.N is known to many scientists, and in number of cases it can be

established analytically or by using obvious arguments (9]. However, insufficient

attention has been paid so far to the application of this prperty. In our view,

with the requirement for high precision of numerial computations rising and,

hence, with finer spatial grids and smaller values of At used, the importance

of domain decomposition methods will be increasing. As seen from Section 5. these

'I.,



methods are very convenient for implementation on parallel computers.

The results of this paper can be considerably improved if we impose some

additional constraints on the forms a(u,v) and the grids. These results can be

extended in an obvious way to the three-dimensional case. In Section 3, for

example, the two-level DD-preconditioner can be replaced by the three-level one

with the domain Q partitioned into cubes. The implicit scheme of the first
h

order accuracy in time can be replaced by the Crank-Nicholson scheme and all the

main results remain valid. All these problems still need be theoretically and

practically investigated in details.
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1. Introduction

There are several approaches to solve multidimensional quantum mechanical
scattering problems. The most widely studied practical methods in physical chem-
istry are based on writing the solution of the time-independent Schr6dinger equa-
tion with nonhomogeneous boundary conditions as an expansion over products of
unknown non-square-integrable radial relative translational functions and known
square-integrable internal-orbital functions [1,21. This leads to coupled ordinary
differential equations for the radial functions, and these are usually solved by prop-
agation along the radial scattering coordiante [3]. In atomic and chemical physics
this is usually called the close coupling method. Each internal-orbital function is
called a channel, and the number of coupled equations equals the number of cou-
pled channels. In 1979 a workshop [4] was held comparing most of the available
specialized techniques for solving these equations to each other. In addition they
were compared to a widely used, state-of-the-art, general-purpose variable-order,
variable-stepsize predictor-corrector (PC) algorithm [5]. Interestingly, adding the
computer times to solve four test cases, the PC algorithm rated 15 1h out of 15

schemes tested, with a computer time 19 times greater than the best specialized
scheme. This shows the great utility of special methods and the great progress
achieved in developing highly accurate specialized techniques for atomic and molec-
ular collisions.

The four trial problems used to compare algorithms in the 1979 workshop in-
volved 15-22 coupled channels [4]. With supercomputers and efficient vectorization
[6] and storage management [7] strategies, much larger single-arrangement problems
have been treated successfully, e.g., a four-body problem with a realistic potential
function and 1358 coupled channels has been solved [8] by the technique discussed
above of propagation along a scattering coordinate, and a model problem involving
the scattering of an atom by a corrugated crystal surface with 18711 channels has
been treated successfully [9] by a time propagation algorithm [10].

Rearrangement collisions, however, pose special difficulties. For example, we
will consider a rearrangement collision consisting of the reaction of an atom A with
a diatom BC: A scatters onto BC, a rearrangement (chemical reaction) occurs,
and AB scatters off C, or AC scatters off B; the solution also contains terms and
boundary conditions correspor, ding to A scattering nonreactively off BC. To define
a single propagation coordinate, we must either introduce special coordinates that
complicate the differential operators and the boundary conditions [11-19], or one
must introduce nonlocal potential operators that convert the differential equations
into integrodifferential equations [20-22]. Non-propagative methods for rearrange-
ment scattering have been developed to avoid these problems, especially for electron
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scattering (e.g., electron-helium scattering in which the incident electron may ex-
change with either bound electron of helium). Because of the essentially infinite
ratio of nuclear and electronic masses and the simplicity of the coulomb potential,
the coordinates and nonlocal potential operators both become particularly simple
for electron scattering. A variety of basis set techniques-nonorthogonal spectral
methods-have been developed and successfully applied to such problems [23-29].

Chemical reactions are harder to treat than electron scattering not only be-
cause the coordinate transformations and potential functions are more complicated
(potential functions for chemical reactions typically involve hundreds of lines of code
as contrasted to the simple coulomb potential that completely suffices for electron-
atom scattering in nonrelativistic problems), but also because the de Broglie wave-
lengths are smaller, i.e., there is more stucture in the solutions. In the la:t few
years we have developed a variational nonorthogonal spectral method for chemi-
cal reactions [30,31], and we have applied it to obtain converged solutions to the
time-independent Schr6dinger equation with rearrangement scattering boundary
conditions and up to 844 coupled channels [32]. Our method is based on a gen-
eralization of a variational principle due originally to Newton [33,34], and it is
based on expanding the reactive amplitude density in a nonorthogonal basis set.
Other basis set variational methods [35-41] based on the Kohn variational princi-
ple [42] and sharing many attractive features in common with our approach have
also been proposed recently. All these approaches, as well as new nonvariational
basis set techniques [43,44] are very encouraging for improving the computational
efficiency of nonorthogonal spectral methods for the quantum dynamics of reac-
tive scattering. The present paper is concerned only with the approach based on
the generalized Newton variational principle (GNVP). The theoretical formulation
of the method [31] and some computational improvements [42] are presented else-
where. The present paper, after a brief overview of the working equations, describes

three additional computational improvements, including improved use of inherent
symmetries and a new more localized basis set.

The final variational equations in the method described here may be obtained
in several ways. They were originally derived by applying the GNVP to the problem
posed as a set of coupled Fredholm integral equations of the second kind [10,31,45].
(They can also be obtained from the formulation of the problem as coupled in-
tegrodifferential equations [20,21,46] or with a scattered wave or outgoing wave
variational principle [47-50] based directly on the Schro6dinger equation with non-
homogeneous boundary conditions.) There are many general techniques for solving
Fredholm integral equations of the second kind in a single variable [51]. Just as

the specialized techniques developed in physical chemistry for single-arrangement
scattering are much more efficient than general-purpose predictor-corrector algo-
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rithms for coupled ordinary differential equations, we believe that the specialized
techniques developed for solving the coupled equations describing reactive scatter-
ing are also more efficient than general techniques developed previously for solving
coupled integral equations.

Spectral techniques are now widely employed for solutions of problems in fluid

dynamics [52-551. The choice of basis functions in these applications is very critical,
and the same is true for treating reactive scattering. One possibility is to choose ba-
sis functions to minimize the number of nonzero weights in the quadratures leading
to a given matrix element; this kind of consideration leads to using, e.g., Lobatto
functions [40]. Another possibility is to choose the basis functions to allow more
efficient quadratures by using fast Fourier transforms or fast cosine transforms; the
latter can be accomplished, e.g., by using Chebyshev basis functions [55]. A third

possibility is to use basis functions that reduce the number of integrals and the time
to solve the final coupled linear equations; this has been our philosophy so far. In
the present work we discuss a new consideration, namely a choice of basis func-
tion that minimizes the calculational effort in obtaining the half-integrated Green's
functions that enter the GNVP and in the integrations over these functions.

2. Theory

First we outline the formalism of the basic calculations, and then the improve-
ments are described in detail.

2.1. General Equations

We consider atom-diatom reactive scattering with three arrangements: a = 1
denoting A + BC, a = 2 denoting B + AC, and a = 3 denoting C + AB. The
formalism and notation are the same as used previously (31,42]. The Schr6dinger
equation is

(H - E)*"" = 0 (1)
where H is the Hamiltonian, E is the total energy, and IVo is the wave function
with complex nonhomogeneous boundary conditions corresponding to an incoming
wave in channel n. and outgoing waves in the other channels. The wave function
determines the scattering matrix, a complex matrix of scattering amplitudes from
which all physical observables of the scattering process may be calculated. Although

the boundary conditions on the final solution are complex, to correspond to the
physical conditions, we form the solution to the problem in such a way that most
of the computations involve real quantities. The channel label n is a collective
index denoting arrangement a and internal quantum numbers specifying a channel

in that arrangement. The initial channel and initial arrangement (or-sometimes
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below-any special channel and its corresponding arrangement) are denoted n0 and
a., respectively. We use conservation of total angular momentum J, parity, and
arrangement symmetry, if present, to block diagonalize the problem, and all further
considerations refer to a single block of N coupled channels.

Equation (1) is rewritten in three different ways (a = 1,2,... ,3) as

(H$ + V$ - E%.= o (2)

where H D is a called the distortion Hamiltonian. It contains the kinetic energy and
a part of the potential that only couples channels in the same arrangement (with
subblocks called distortion blocks), and V.' contains the rest of the potential. First
we define the regular solutions 01-"- of

(HD - E)o"* = 0 (3)

for various possible initial channels n. and the principal value Green's functions
defined by

G D = p(E _ H D )  (4)

for all three arrangements. These are called the distorted waves and the distorted
wave Green's functions. Then we apply the GNVP to solve for the remaining cou-
pling due to the V c potentials. This is accomplished by expanding the reactive
amplitude density [31,451 in a square-integrable (C2) basis of functions 4, with
6 = 1,2,..., M. Each basis function is a product of a radial translational function
tOPmP(R,,,), where R , is the radial translational coordinate in arrangement a$,
and an internal-orbital function Oao corresponding to channel n,6 in this arrange-
ment. The GNVP tnen leads to a matrix equation for the scattering matrix in
which the matrix elements are integrals over VF, GD, and GDV2G, sandwiched
between the various o" and ,9.

An important computational aspect of the resulting equations is that every
Green's function always appears in an integrand multiplied by a basis function in
the same arrangement. Thus we never compute the Green's functions themselves,
but only a set of integrals over these functions. These integrals are called half-
integrated Green's functions (HIGFs). The radial distorted waves and radial HIGFs
are computed by a finite difference boundary value method (FDBVM) [45,56], using
an irregular mesh that contains Gauss-Legendre quadrature nodes for all further
quadratures of these quantities as a sub-mesh [311. This avoids the difficulties
[57,58] of integrating over functions with discontinuous slopes.

Then the scattering matrix is given by f42]

S". = b,.,. oS,,. + S..., (5)
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where 'S is the scattering matrix for the distortion potential, I is the correction

produced by the remainder of the potential, and a. is the arrangement associated
with channel n. (We ignore the notational complications due to the presence of
closed channels, for these details play no important role in the subsequent discus-
sion.) The correction to the scattering matrix due to the coupling potential is given
by

s = B + sT- f (6)

where the matrices in Eq. (6) are given by

SB= ATXBA, (7)

B = (B + X T B)A, (8)
and and C - BX - xT_ + xTD - VxTax. (9)

A is the transformation which takes the regular distorted waves from real standing
wave boundary conditions to complex scattering matrix boundary conditions, X is
the transformation required to form the outgoing wave HIGF given the real function,
and

= J dR..r E A:Yn.-Fnn'(R..) r~na n(R.0 ), (10)U/
ICo= JdR0,o Z A' 7.. C,,(R0 , ) o)(')ff?,(Rero), (11)n,

Bo. dR,,. A°,'.9P ,. (r .n(.) (11)
ft n

t

D fdR.o nnD(Ra.)tnO (R ), (12)

= JdR0 .A 7,(R..) §p (R,,.), (13)

iin

and
C, ° = J dR,,,°Tt,,. (R.o)t-.,, (Ra.o)

- dR,,. :X C,..on' (R,,.)4 N,.(R..).
n,

A three-body system involves three internal coordinates, and these equations involve
the final (third) integration of the quadrature over these coordinates. The matrix
element Ann . is one if channel n and channel n. are both members of the same

distortion block of arrangement a. and are zero otherwise, (r)f.° is the regular
radial function for the distortion potential defined by n and n. and satisfying real
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MON*-

boundary conditions (i.e., it is one of the radial relative translational functions
obtained by solving a set of close coupling equations for On-), 0. is a specific basis
function associated with arrangement a., and gN is the radial part of the real
HIGF associated with the distortion block containing n and basis functionf/. The
HIGF can be expressed as [31]

Nn(R.)=J dR. gnn,(R., R') im.,,(R'a), (15)

where n and P are both associated with the same arrangement a, and the radial
Green's function is defined as

J,( R,) (i)fn"n ,M. R'k

g.(RR) =f,(R )f,,,(R) R < (16)g.,a) E AL.,,Aa,., n (.)

where ()fn,, is the irregular analog of (r)fn.,,. In addition the integrals .F,.,,

G ,, 4, 0, and 2j., are given by the expressions

f An. (E)nn(R)e,,o(Ro) a = a; (17)

fo .f -', A n (r)f.n(R,)Wfoz(R R..), otherwise,

~z:~ ~a = a0O;f .E." N

Q~. = { dRG n,,.A n,,,,(R.)W"*(R,,, Re..), otherwise, (8

n- f ,(.)fO,.',(R,°.) . ., = a0; (19)
tnn.= Aan cf (19)

f fdRa E ., Au,,, (R)B,(RaRo.), otherwise,fdR ,E.' A., n' n,.(RO)B",.(R., R..), othrie

and
A.;,,.nj(R,.), a = ao;fl.° f dR. En "an NP . (20

= j R .o NO, ,,(R)Ba*.(R., R.,J, otherwise.

The integrals (17-20) contain the inner two quadratures of the three-dimensional
integration mentioned above. For integrations over functions defined in two different
arrangements, say a and a., the quadratures are carried out in a coordinate system
consisting of R., R.., and the angle A.. between the vector from the atom to

the diatom in arrangement a and the analogous vector in a.. The inner loop

involves integration over A,.. and yields B,*, or C*,', from which we calculate
W,*.* [311. The various middle loops are given in Eqs. (17-20), and the various

outer loops are indicated in Eqs. (10-14). Similarly e.,,,.(R 0 .) is defined as a two-

dimensional integral over internal coordinates orthogonal to R.. when all functions
in the integrand are associated with the same arrangement a.. Further details of

3



the quantities in Eqs. (1-20) are not necessary for the discussion in this paper--see
Refs. [31,42] for full details.

2.2. Hermitian Properties of the Hamiltonian

Let us consider the integrals given by Eqs. (17-20) for a triatomic system
where all arrangements are different. Now the matrices XB and C are symmetric

while B, j, and V are rectangular. For the symmetric matrices it is necessary to
just compute the lower triangle, i.e., we can restrict a < a.; thus only 3 of the
6 possible reactive arrangement pairs are required. However at first glance it may
seem that for the rectangular matrices it will be necessary to use all 6 of the reactive
arrangement pairs, but we now show that this is not so. That is, the rectangular
matrices can also be assembled from only the 3 reactive arrangement pairs required
for the symmetric matrices.

To derive the relation we require, it is useful to express the matrix elements of
the rectangular matrices in Dirac notation [311:

B.=<4sJ .. o IGDUa*I¢ .... >,(1

B. =< @jGCU 0.[¢ >=< 4 >, (21)

0=< Oa [ a- 1.>, (22)

and
D.° =< O¢npl*1,1@#o >, (23)

where
U... = -(2p/h 2)[H - E + 6aa.(E - H,9 )], (24)

u*" = -(2u/h1 2 )[H - HD., (2)

and / is the reduced mass. Now for inter-arrangement integrals, 4", is just
-(21A/h 2)(H - E), which is Hermitian; thus since B,. is real it can be written
as

B#,. =< 0*a. t IZ4.G.., I . (26)

Now we also know that [311

U..0 G = UG - 1 + 6o. , (27)

thus for inter-arrangement matrix elements,

B,_ ---< ,k.n.Iu*DOD,, > - < ¢ .... IU4*4, >, (28)

or

B = . - Vn.,6. (29)

354

A I



This has two consequences. First of all Eq. (9) can be rewritten as

C -- rX-XTBT + Xt _ XT]CBX, (30)

where 5 is zero unless an intra-arrangement integral is involved, in which case it
is equal to V (see also Ref. [59)). Thus there is no need to compute and store the

additional matrices and V. This means that there are no integrals required for
the complex scattering matrix boundary conditions which are not also needed for
calculations which employ real reactance matrix boundary conditions. However this
is not the only advantage. If in calculating the integrals given by Eqs. (17-20), the
restriction a < a. is made, then there is enough information to calculate B6no for
a < a. and the matrix elements n and Dpo for a < a.. Then by using Eq.
(29), one can obtain B# . . for a > ar.

Thus it is not necessary to evaluate the integrals (17-20) for a > a.. This
is an important simplification because the calculation of these integrals of Eqs.
(11-14) usually requires a substantial fraction of the whole time taken up by the
integral calculation. Thus for systems having no symmetry, this amounts to almost
a factor of 2 decrease in the work involved, since only 3 out of the 6 possible reactive
arrangement pairs are required. For systems having identical atoms this factor is
smaller: For systems of the type A +1B2, i.e., where B is the same kind of atom as
C, it is necessary only to perform 2 of the possible 3 unique reactive arrangement
pairs, while for A + A 2 collisions, no savings above those already achieved by using
arrangement symmetry [421 are possible from this technique.

2.3. Localized Basis Functions

In this section we show how the calculations simplify if t*, (R.) is a localized
function. Although it is convenient numerically to bypass the calculation of the
irregular function in Eq. (16) and solve for the HIGFs directly, it is necessary to
consider the expressions (15-16) for the HIGF in terms of the regular and irregular
distorted waves and the basis functions in order to see the effect of localization.

In particular suppose that the basis function t,p no is zero for R. < R' and
A,, > R'. Then the limits on the integral in Eq. (15) reduce from the original 0

to co to the computationally more attractive RS to RL. Thus if R, < RS, then
in the integral of Eq. (15) we will have R. < R for all R.,, and the HIGF will
be equal to a linear combination of the columns of the regular function. Similarly
if R. > RL, the HIGF will be equal to a linear combination of the columns of
the irregular function. Now in practice we wish to avoid calculating the irregular
fbnction; however this is not difficult since we only need to know this function at
large distances, and for large distances one of the HIGFs will do just as well. We
will order the basis functions so that -- 1, ... , N correspond .o the basis functions

355



which have the smallest values of R for each np. Note: N, the number of channels,
is less than M, the number of basis functions. Thus we can write

fj '..,( R)d, .Ac, R. < R
,N 10 n no

nf I. §NlpLnn R,,i ,, R,, > RP. (31)

bNo. (R0 ) otherwise,

where d ,s and dL are proportionality constants, bN, is the HIGF having the
smallest value for R , and N is the numerically generated function. The propor-
tionality constants for small R. can be evaluated via

a= 'An fdR- ( iO f.(R.)t -Mon, (R.) (32)

if the irregular function is known, or more practically by forming the ratio of the
numerically determined HIGF and the regular distorted wave. We form the average
of the radial functions over several distances immediately prior to R' and then form
the ratio to obtain dn. One difficulty with this procedure arises when distortion
potential blocks contain both open and closed channels. In this case, some of
the columns of (r)f a are so small near the origin that it is not possible to obtain
an accurate inverse; then the procedure fails. This problem can be avoided by
decoupling the open and closed channels.

The proportionality constant for large R. can be determined by a numerical
ratio in a similar manner to the procedure for d or by solving

*= dndnP, (33)

no

where

d#.= Ac .JdR. (r)fa(R)eR)(4

and d, corresponds to the integral for the basis function having the smallest value
for R0. The integrals in Eq. (34) are also required for the large-R, boundary
conditions for the HIGFs [31].

Equation (31) has several consequences. First of all, it is clear that once (r)f~no
and #N, are known, it is only necessary to calculate and store the remaining HIGFs
in the ranges R% to Re. In practice since we determine the #N by solving an inho-
mogeneous form of the finite difference boundary value method 131,42 (FDBVM),
we can reduce the finite difference grid used for the regular function and the first
HIGF, which goes from Ra, to R F  grid which goes from R 1 to just

,,N(F), to
beyond the maximum value of R ecus RF

o Because RN(F) is determined by the distance
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where the potential becomes negligible, whereas the maximum value of RL is deter-
mined by the distance where the difference between the potential and the distortion
potential becomes negligible, this can result in a considerable savings. The most
important consequence of Eq. (31) however, arises from applying it to the integrals
in Sect. 2.1.

There are two classes of integrals to consider. First of all there are the radial
integrals with one HIGF and no basis functions, which we will approximate by a
quadrature sum:

- E MJ's(i) '  (35)

where

M0.= n (Ra,) (36)
no

wl being a quadrature weight and M,, some matrix function. The integrals falling
in this case are 1;0o, Tn., Bon, (for which the transpose of Eq. (35) and following
are used), the intra-arrangement parts of Bono, and the inter-arrangement parts
of Cao . It is useful to define a quantity analogous to Mo,, called ML, which
differs by replacing the HIGF with the regular finction. Then applying Eq. (31),
the integral becomes

.5L

h i-1 i=i -Fl

,t (37)

+EA d[ +

where Rrns is the largest quadrature point less than Rs and RjL is the largest

quadrature point less than RL. (For the HIGF with the smallest RL, we set iL equal
to NRQ.) It should be noted that the quantities in the first sum must be calculated
anyway-for the list of integrals mentioned after Eq. (36), these correspond to Y',,o,
T , KB nB and Bon, respectively. Thus we see that the radial quadrature
points fall into three regions: those less than all is where only quantities involving
the regular function need be accumulated, those greater than a Rl where only
quantities involving the regular function and the HIGFs with the smallest value of
iL need to be accumulated, and points in the intermediate region where the sums
will include some number of HIGFs less than the full set.
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Now consider the case when there are two HIGFs. Here the integral can be
written

NRQ
2= M~g (i), (38)

where

Mg,66 = AwnE A n,, og~(a)nnRig, (a (39)

non"

The integrals falling in this case are the intra-arraigement parts of C. The presence
of two HIGFs greatly complicates this case compared to Eq. (37). There are now
six cases to consider: nonoverlapping basis functions, one basis function contained
within the other, and other overlapping basis functions, with the bra or ket starting
first. However it can be shown that the result of using Eq. (31) is

*in(s ,is)

.d(0,hI(i)) is is +40)

{ h An, [ h(N RQ) - I"S(max(iL , is, is )]d• i >

+ A? [I;#(N RQ) - I(max(i,%,ia))] i. >

In this equation, If,= corresponds to B, and an argument of i is interpreted as the
sum up to the ih' quadrature point. It should be noted that for non-overlapping
basis functions, the middle sum will have no contribution. In addition, this formula
applies as well to matrix elements consisting of one HIGF and one translational basis
function. In this case, d's and d*L for the translational basis function are zero and

IPn corresponds to b. Since the number of terms in the middle sum is much less
than the number of radial quadrature points, NRQ, using Eq. (40) greatly reduces
the work required for evaluating the integrals. It should be noted that care needs
be taken to avoid excessive round off error when evaluating the last subtraction in
Eq. (40). Optimally one would separately store the contributions from the various
intervals between min(is, is) and max(i, is i o max(, i, is), sis i'Bs )or max( L) since in this

way no explicit subtraction is required.

Another way to exploit Eq. (31) is to take linear combinations of the HIGFs
and use these as basis functions. Consider the HIGF labeled by We can form
the combination

§r (R.) ---gN( E N )oL

-- n,(R,)dn, (41)
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in which case the analog of Eq. (31) for n becomes

r)f.a.,(R)d0.sAe, R <

S(R.) = 0 R, > RL (42)

4f B(R.) otherwise,

where R S is the smallest value of Rns,, and dst- is the new small Re proportionality
constant. There are two advantages of this formulation. First of all, when using the
4, Eqs. (37) and (40) simplify, because now only the first two terms are present.
This is especially important for Eq. (40), because one now avoids the final subtrac-
tion, which is complicated to implement in a manner which avoids roundoff error.
The second advantage arises when transforming to complex boundary conditions.
This will be discussed in the next section.

One disadvantage of using the 4'C is that while previously the first sum in
Eqs. (37) and (40) went from 1 to is or miu(is,is), it now goes from 1 to is ,

where Riga is the largest quadrature point less than R s . Since iS will be smaller
than is or min(is,is ), the overall efficiency is not as great. However, one can
diminish this effect by not using in Eq. (41) the 4N, which are the HIGFs with the
smallest values for large-R zero limit, but rather using HIGFs which have as large
small-R zero limits as possible subject to the constraint their large-Re zero limit
is not larger than R'. This will maximize is.

We now consider the effect on the matrix elements when the 4no are substituted
for the §'N in Eqs. (10-14) and (17-20). Since Eq. (41) can be written as

g = iNL, (43)

where the matrix elements of L are the constant factors in Eq. (41), we see that
provided we combine the tMpnp in Eq. (14) using the same rule as was used to
produce the g , then we obtain

Bt = LTB (44)

and
Ct = LTCL (45)

when using the 4f. Provided that L' exists, it is easy to see that

B t T C-1Bt = BTC-IB, (46)

thus it is not necessary to transform back to the §. In order to ensure that L - 1
exists, it is necessary to retain at least one N per channel.
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Now consider the transformation from real to complex boundary conditions,
Eqs. (8), (9), and (30). Since the #1C are strictly zero beyond the distance where
the associated localized basis functions are zero, they will be independent of the
boundary conditions. That is, the subblock of X associated with , will be the

unit matrix, the subblock of b will be the zero matrix, and the portions of (4
which are associated with two of the gf will be real and the same as Cr. In the
next section, we will show how this can be exploited to save work in evaluating Eq.
(6).

Thus we see that substantial work can be saved in evaluating the integrals when
localized basis functions are used. We now consider the choice of such functions.
In our previous work using variational methods, we have used distributed gaussian
functions [30-32,42,59-74] or sine-type functions [31] as a basis. Strictly speak-
ing, the gaussian functions are not local, since they are zero only asymptotically;
however for practical purposes they differ significantly from zero only in a narrow
region. Thus one procedure to use would be to set the gaussian to zero whenever it
fell below some fraction of its maximum, say 10-14. However this procedure intro-
duces discontinnities into the integrands which can cause slow convergence of the
numerical integrals. Thus we seek a localized function which is continuous and has
continuous derivatives. The function we will use is inspired by the cutoff function
of Ref. [75], and is given by

t exp[- =07M] lxi < b
= 0 xIn _ b

We call this function a cut off gaussian" (COG). It has the property that for small
x/b, it behaves like exp[-a(x/b)2 ], so can be made similar to our previous basis
functions, yet it is localized within b of its center. It should be noted that as
a --+ oo with fixed a/b2 , the COG becomes a gaussian.

2.4. Partitioned Matrices

We will partition the matrices into blocks consisting either of functions which
are localized (the g'p) or those which are delocalized. Thus we write

B (48)

and C = (Cc C~' (49)

where the subscript 4 means localized and c delocalized. If we solve the matrix
equation

_B + B~rCr-'B', (50)
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by blocks, we obtain
K _ Kf + BfTC1f B1 , (51)

where the folded matrices are given by

K81 -CB - B' CT - (52)

BfT C-=-- (53)

and
C f = C_ - CC - 1 "'C'. (54)

Now consider solving Eq. (6) by the same procedure. The result is

fS SB + tff -'fBJf, (55)

where the complex folded matrices are obtain from Eqs. (7), (8), and (30) using
the real folded matrices of Eqs. (52-54). A similar procedure was employed in the
context of the Kohn variational principle in Ref. [36].

Several things should be noted concerning the above procedure as it affects the
GNVP calculations. First of all, if the number of localized functions is considerably
larger than the number of delocalized functions; as may often be the case, the work
to produce the folded matrices will be greater than the work to evaluate Eq. (55).
This means that the computational effort involved in a calculation with complex
boundary conditions will be very similar to what would have been required if real
boundary conditions had been used. Also the memory requirements will be similar,
because it will not be necessary to store the imaginary part of C.

3. Applications and Directions for Future Work

The techniques presented here and previously provide an efficient method for

large-scale quantum mechanical calculations of chemical reaction dynamics based
on the generalized Newton variational principle. Some applications that have been
made include the calculation of converged cross sections for the H + H2 [631 and
D+H 2 [32,71] reactions and converged state-selected reactive transition probabilities
for these reactions [30,31,42,59,61,62,65,66,69] and for the O+H 2 [59,72] and O+HD
[59,67] reactions. We have also presented converged reactive transition probabilities
for the F + H2 reaction with total angular momentum J = 0-2 [64,68,70,73,74].
We have calculated converged collisional delay times, which require ve-v stable

(numerically differentiable) solutions as a function of energy, for H + H2 with J = 0,
1, and 4 [69], for D+H 2 with J = 0 [651, and for F+H 2 with J = 0 and 1 [68,70]. An
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earlier nonvariational version of the method was used to obtain converged transition
probabilities for the H + H 2 [45], D + H 2 [45,76], 0 + H2 [46,77], 0 + OH [46], and
H + HBr [78] reactions.

For 0 + H2 we have obtained very well converged results with an average of
as few as three gaussians per channel [72]. A recent study of basis set requirements
for F + H2 showed that excellent convergence can be achieved with 10 gaussians per
channel in the F + H2 arrangement and 18 gaussians per channel in the H + HF
arrangement [73]. Further efficiencies can be achieved by using better basis sets, e.g.,
by basis set contraction [31,74,79,80] or the use of localized basis sets as described
in the present paper. Another promising approach is based on the reinterpretation
of the GNVP using a scattered wave variational principle [47-50]. This allows for
hybrid basis sets which effectively convert some of the integrals over G 14 o G D, as
in C,9,o, into simpler energy-independent integrals. All these approaches are being
explored for further applications.

4. Summary

We have introduced new techniques to reduce the work required in applying
the generalized Newton variational principle to three-dimensional reactive scatter-
ing calculations. The underlying idea behind these developments is to minimize
redundant work as much as possible. This is accomplished in two ways. First of
all the fact that the Hamiltonian is Hermitian is used to decrease the number of
inter-arrangement integrals which must be calculated. Even for a system with no
symmetry, e.g., 0 + HD, this reduces by half the number of two dimensional in-
tegrals which are performed before the final integration of the three-dimensional
exchange integrals. Secondly we introduce a localized translational basis set which
need not differ significantly from our previous basis functions and then exploit the
effect this has on the half-integrated Green's functions to reduce the amount of
work required to calculate these functions, the amount of storage required to save
these functions, the amount of work required for the integi als over these functions,
and the work required for the final linear-equations step when complex boundary
conditions are used.
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Software Environments for the Parallel Solution

of Partial Differential Equations

L. Ridgway Scott

the University of Houston

Most commercial supercomputers are now sold as multi-processor systems, and recent

performance gains have come primarily from the additional processors rather than improve-

ment in the single-processor performance. New systems based on large numbers of low-cost

VLSI processors have been introduced that offer supercomputer performance at a fraction

of the cost of conventional architectures. However, a major obstacle to achieving either

the overall performance of the multi-processor supercomputers or the cost-effectiveness

of the newer "parallel VLSI supercomputers" is the difficulty of programming them. Per-

formance gains are also being achieved by the development of complex algorithms such as

multi-grid, however such algorithms are often avoided even on conventional architectur.s

due to the difficulty of programming them. We are developing techniques for implementing

highly efficient (and theoretically justified) algorithms for scientific computation on paral-

lel architectures by combining expertise in both computer science and mathematics. The

objective is to do so in a way that the resulting codes are both efficient on, and portable

among, a wide range of parallel computer architectures.

Most research on parallel programming languages in the past has been devoted to

programming multiple tasks on a single processor, e.g., as must be done in an operating

system for a conventional computer. However, new performance gains are now expected

from parallel-cpu computers that co-operate on a single task. Programming language tech-

niques for the latter environment are currently being studied by a number of researcheis.

We have proposed a language construct that allows code on one process(or) to access vari-

ables explicitly (by name only) that are "stored" in another process(or). Thus it allows

one to program a distributed-memory macliine as if it has a common address or name

space. This technique led to significantly shorter development time for parallel codes, as

well as improved portability (implementations were carried out on both the NCUBE and

iPSC) and reliability. We have found it possible to program a large number of diverse al-

gorithms quickly and to obtain excellent performance. We are extending these techniqu,!s

to include the use of advanced programming languages which allow the implementation of

abstract data types. This makes coding and debugging finite element and finite difference

applications much faster and more reliable.
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COMPUTATIONAL ASPECTS OF "FAST" PARTICLE SIMULATIONS

CHRISTOPHER R. ANDERSON*

Abstract. In many particle simulations the calculation of the potential (velocity field, force, etc.)
requires O(N 2) operations where N is the number of particles. In this paper we describe the basic ideas
behind three methods which are employed to reduce this operation count to approximately O(N). We
discuss the issue of parameter selection for these methods and present some computational evidence which
demonstrate the importance of making good choices for the method parameters. We conclude with some
opinions about the relative merits of the methods.

1. Introduction. The purpose of this talk is to discuss several methods for reducing
the computational time required to carry out particle simulations. The simulations I have
in mind are those which occur in a wide variety of physical problems - plasma physics,
astronomy, incompressible fluid flows, etc. In rather general terms, in order to compute the
evolution of the particles in these simulations, one is is required to compute a potential,
force, or velocity which every particle induces on every other particle. If one computes
this interaction explicitly (using a formula I will give below) then the computational time is
proportional to O(N 2 ) where N is the number of particles. I shall refer to this explicit calcu-
lation as a "direct" method. There are so called "fast" methods for which the computational
work is O(N) (or O(N log N), etc.).

Now the O(N 2 ), or direct, method is very easy to implement, it takes about fifteen
lines of Fortran code. It is also relatively simple to write the code so that advanced compu-
tational hardware (vector or multiprocessor units) can be used to significantly reduce the
computational time. On the other hand the O(N), or fast, methods are rather difficult to
implement (often several hundred lines of code) and organizing the computation so that
vector or multiprocessors are utilized efficiently is a challenging problem. These fast meth-
ods typically have parameters which must be specified in advance of the computation. A
wrong choice of these parameters can lead to a "fast" method which takes more CPU time
than the direct method. Moreover, there are several fast methods, each with somewhat
different properties, so that the choice of which method to use can be difficult. In spite of
these drawbacks there is still great interest in the O(N) type methods - primarily because

Department of Mathematics, UCLA, Los Angeles, California, 90024
Research Supported by ONR Contract #N00014-86-K-0691, NSF Grant DM586-57663
and IBM Fellowship D880908
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the benefit of using such a scheme (when implemented correctly) can be enormous. As an
example, in a two dimensional vortex calculation the running time for a direct evaluation
of the velocity field induced by N=31,000 particles was 360 seconds, while a fast method
took only 4 seconds [3].

This reduction in running time is sufficient to stimulate a bit of interest in these fast
methods, and so I intend to discuss three different fast methods. While these do not exhaust
the set of methods one can choose from, these are methods I am familiar with, and I believe
they form a representative sample of the whole class. While the methods may appear to
be very different, each of them utilizes tht same basic principle, and I will "derive" the
methods by discussing the basic principle and indicating how this is then developed into
the methods completed form. This discussion will be rather general, and one should consult
the references for the precise details. The general information is not without value, for it is
through this general understanding that one can appreciate the issues related to parameter
selection and other implementation details. I will show some computational evidence which
shows why one should be concerned with parameter selection and indicate how one might
choose the relavent parameters optimally. Lastly I will discuss some aspects of method
selection. Each of these methods take considerable time to implement (or to just learn how
to run efficiently) and so the issue of appropriate method selection is important.

2. Fast Methods. The computational task in the particle simulation one performs
depends on the type of simulation - for vortex calculations one computes the velocity
field induced by the particles, for galaxy simulations one computes the force induced by
gravitational attraction etc. Rather than deal with each, I will discuss fast methods for the
following model problem: Given N charged particles at locations zi with strengths K, then
the goal is to calculate the potential O(zi), where 0 is a solution of

N

(2.1) bAX -Z6(z
i= I

and 6(z) is Dirac's delta function and A is the Laplacian. (If one wants forces then one
computes the gradient of this solution.) I will work with the two-dimensional case since
the key ideas behind the methods don't differ much when one goes from two to three
dimensions and the two dimensional case is easier to describe. There are certain etficiency
issues which change with dimension and I will address these specifically. I am also not
discussing computations in bounded domains. This feature introduces some important
complications, but it does not influence the basic structure of the fast methods, and so I
am assuming the computation is carried out in all of R 2.

Often in simulations one uses smoothed delta functions (or "blobs") and the model
problem in this case is identical to (2.1) but we solve

N
(2.2) A0 = lyP(z - ri)K,

i=1

where 1i, is a smoothed delta function whose support is contained within a disk of e. The
choice of %P and e is important for a simulations accuracy, but not particularly important for
the methods used to accelerate the computation of (2.2). 1 make the assumption that the
blobs have support contained within disks or spheres of radius e, and so the blob functions
can not be completely general.

The solution , of (2.1) is given by

N(2.3) 0b(_) = og0l - X,I1)
21r

370



or for (2.2)

N
i=

(2-4) €,z)-- jz,( -zi)

where 0, is the potential induced by a single blob. (This can often be calculated explicitly
by solving A$ = 4I,(x) using the method of separation of variables.)

From (2.3) or (2.4) it is clear that if we evaluate the solution 0 at each point zr, i=
1, ...n, then this computation requires O(N 2 ) operations. For particle simulations, the larger
the value of N the better, and so there is great interest in reducing this operation count.

A common ingredient to all of the fast methods which I am going to describe consists
of representing the potential induced by a cluster of particles by a single computational
element. The savings in computation time comes about because this new computational
element typically takes less work to evaluate than evaluating the potential directly for the
individual particles. The "cost" of this procedure is the loss of accuracy which occurs when
one represents this potential by the new computational element. The implementation of
this idea is perhaps most clearly seen in the multipole method [8]. Consider a cluster of M
particles contained within a disk of radius R. (See figure 1). Outside the disk, the potential
is the real part of an analytic function and therefore can be represented as the real part
of a Laurent expansion. (Here we are identifying the x-y plane with the complex z plane.)
Thus, we have

=Re( log(z- z))= Re(Klog(z-z0)+ ak )k)

i=1 k---1 (Z -k

where zo is the center of the disk containing the particles and K and a; are coefficients
calculated from the strengths and locations of the particles in the disk. If an evaluation
point is outside a disk of radius 2R then the error in using p-terms of this Laurent expansion
is O((')P). Thus, given some desired accuracy, we select a value of p which assures this
accuracy and use the p-term truncated expansion to represent the potential induced by M
particles, i.e. we use the approximation

Re ( Ilog(z - zi)) ;t Re (K log(z - z) + a )k

k= (Z - Zk

This finite Laurent series is the new computational element, and the cost of evaluating
this element is O(p) compared to O(M) which would be required to evaluate the potential
directly. Since the number of particles M does not factor into the error estimate, one obtains
computational speedup if M is much greater than p. There is of course work involved in
constructing the finite expansion - but this only requires O(M) computations and need be
done only once. This work is therfore "shared" when there are multiple evaluations of the
potential.

This idea of collapsing a cluster of particles to another computational element which
is easier to evaluate can take other forms. In particle in cell methods a finite difference
grid of mesh width h covers the the cluster of computational particles and any desired
evaluation points. (See figure 2.) One then assigns values of charge density to the grid
nodes to approximate the charge distribution of the computational particles. Typically a
given particles charge is assigned to a small number of nearby grid nodes. To evaluate the
potential which is induced by these particles we solve a discrete Laplace equation with the
forcing function given by this grid charge density. The result is an approximation to the
potential at all of the grid nodes. To evaluate the potential at points between the grid nodes
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an interpolation formula is used. Again, the work to evaluate the potential once the grid
charge approximation has been made is independent of the number of particles M. In this
particle in cell approach, the new computational element is the combination of a finite set
of grid values (used represent the charge density on the grid) and an inversion of a discrete
Laplacian followed by an appropriate interpolation. (This may seem peculiar to lump the
inversion of the discrete Laplacian into the element, but this is appropriate since each term
in the multipole expansion really corresponds to inverting a Laplacian.)

There is the question of accuracy, and this is what distinguishes the two particle in cell
techniques I will discuss. In the first type of method one selects an assignment scheme,
a discrete Laplace approximation, and an interpolation scheme and this determines the
method. Charge densities are transferred to a grid, a discrete Laplace equation is solved, and
then the potential is interpolated at the desired evaluation points. There is no restriction as
to where the evaluation point is with regard to the particles which give rise to the potential.
There are numerous choices of each of the components, essentially leading to a hierarchy of
methods with increasing complexity and providing increasing accuracy. I am not going to
go into detail about the different possibilities, one can find many of them described in [10),
but merely note that all of these procedures have an accuracy which is closely related to
the size of the finite difference grid which is used to cover the computational domain. The
finer the computational mesh used, the more accurate the results. I shall refer this type of
method as a PIC (particle in cell) method.

Another type of method [1] is similar to the type describe above, but with two distinct
differences. The first difference is that attention is paid to the location of the evaluation
point with regard to the particles which give rise to the potential. If the evaluation point is
too close to the source particles, then the potential from the grid is not used and a direct
evaluation is performed. The motivation for this comes from the observation that the error
in the potential of the particle in cell procedure is greatest near the source particles and
diminishes rapidly away from the source particles. The second aspect is the use of a method
for assigning charges to the grid so that the potential which is obtained after the inversion
of the discrete Laplacian is not coupled to the order of accuracy of the discrete Laplacian.
(Essentially the assignment scheme consists of figuring out what should be placed on the grid
so that after the inversion of the discrete Laplacian, the potential values have an accuracy
which is independent of the mesh size). These changes lead to a method for which the
accuracy is relatively insensitive to the grid size and is determined by other considerations -
for example the size of the region in which the direct evaluation is used as well as parameters
associated with the charge assignment procedure. Since the method involves correcting the
potential in regions localized about the source points, I will refer to this technique as the
method of local corrections (MLC). (One should note that the evaluation of the potential
from grid values is only done at points away from the source points, a region in which
the potential is analytic, so that high order interpolation formulas can be used which take
advantage of this fact. [1], [12])

I have described the basic idea behind three fast methods - the multipole method uses
truncated Laurent expansions and the PIC and MLC methods use potentials induced by
grid based values, to approximate the potential due to a cluster of particles. Of course,
there is a bit of work in creating a complete method from this basic idea. For the particle
in cell approaches it is not difficult to see how a complete method is formulated. Since
the problem of finding the potential is linear, one considers all particles together, assigns
their charge (mass, vorticity, etc.) to the grid, solves one discrete Laplacian and then
interpolates the resulting potential at all of the required evaluation points. If there are
local corrections to be done (MLC method), then for each evaluation point the value of
the potential induced by nearby particles is computed by formula of type (2.3) or (2.4).
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This value is added to the potential at the evaluation point and a value corresponding to
the nearby particles contribution to the interpolated grid potential is subtracted from the
potential at the evaluation point.

Efficiently implementing the concept behind the multipole method is a little more dif-
ficult. There are several ways one can exploit the finite Laurent expansions, and I will just
discuss one of them, that due to Greengard and Rokhlin [8] To use the idea effectively a
box is chosen which covers the computational domain. By recursively dividing the box by
factors of two, a nested set of grids is constructed. One selects a finest level of refinement
m so that there are 2 ' boxes in each direction at that level. For a given set of evaluation
points in one of these finest level boxes, the potential at these points is formed from a di-
rect interaction with particles in the nearest boxes added to the potential due to multipole
expansions associated with the particles in a hierarchy of surrounding boxes. The further
away one is from the evaluation points, the larger the box used to construct the multipole
expansion. One wants to use multipole expansions with the largest box possible, but there
is the constraint that the disk which covers the source particles be a sufficient distance
from the evaluation point box to retain accuracy. As an example of the multipole structure
which is used, see figure 3. In this figure the hatched circle inaicates the box in which the
evaluation points are associated with and the other circles represent multipole expansions.
The center of the circle is the center of the multipole, and all the particles in the box in
which the circle sits are used to form the particular multipole expansion. It is clear that
as the evaluation points change the set of multipoles which are used to approximate the
potential changes. However, what doesn't change is the fact that some subset of multipoles
for small boxes, the next larger boxes, etc. is always used. Thus, in the implementation one
first constructs all of the multipoles associated with all the different size boxes. The next
step is to be clever in the evaluation of the appropriate members of this hierarchy. An idea
introduced by Greengard and Rohklin is to have an equivalent hierarchy of power series
expansions to accomplish this. Rather than go into details about how this is done (see [2]
or [8]), it is instructive to consider how the potential of one particle is "communicated" to
an evaluation point via this network of multipoles and power series expansions.

The source particle in figure 4 is denoted by "x" and the evaluation point is denoted
by an "o". The existence of the source particle causes multipole expansions to be formed
for every box which contains that particle at all the successively coarser levels. Each of
these multipole expansions is indicated by a disk. These expansions are formed recursively,
and so the potential that the source particle induces is first represented by the multipole
expansios on the finest level. The potential induced by this expansion is then in turn
represented by the multipole expansion on the next coarser level, etc.. Next the potential
induced by the coarse level multipole expansion is represented by a coarse level power series
expansion which is associated with the box containing the evaluation point. (The largest
shaded disk in figure 4.) The potential induced by this power series expansion is then in turn
represented by a a power series expansion at the next finer level, etc. until the potential is
finally represented by a power series expansion associated with the finest level. This finest
level expansion is then evaluated to obtain the potential induced by the source particle at
the evaluation point. Every source particle "talks" to the evaluation points through this
hierarchy of multipoles and power series expansions. The number of levels which are used
in this communication process depends on the distance between th- particles - the further
away the source and evaluation point are, the more levels which are used. An important
point to note is that this computational structure utilizes elements which are localized
about the computational particles themselves. In this communication process, multipoles
and power series expansions associated with boxes not directly above any source particles
or evaluation points are not used. This is a bit different from the particle in cell methods
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in which the communication network, a finite difference grid, covers the whole domain and
is not localized about the particles.

3. Parameter Selection. The operation count of each of the methods described
above is O(N) for the multipole method and O(N) + O(M log M) for grid based methods in
which an MxM grid is used. Thus, in terms of this type of asymptotic operation count,
as N is changed the distinction between the methods is covered up by the "0" symbol. A
comparison in efficiency must be based on the size of the constant in the asymptotic work
estimate, and this constant depends on a whole host of factors. The size of this constant
is directly influenced by several of the parameters which must be specified before the fast
methods can be used. I would now like to discuss some of these parameters, and indicate
how they might be optimally chosen. It is only after such choices are made that meaningful
information about the relative efficiencies of the methods might be determined.

In the standard PIC method, one must select a charge assignment scheme,a discrete
Laplace approximation, an interpolation scheme, and a grid size. The finer the grid, the
more work involved in inverting the Laplacian. The more accurate the interpolation and
assignment schemes, the more work is required to implement them. In most calculations the
method of assignment, Laplace inversion, and interpolation is not changed, and so one has
only to specify the grid size to be used for any particular calculation. Since the accuracy is
tied to the size of the grid, accuracy considerations should dictate it's choice. Certainly the
coarsest grid should be chosen for which the calculation retains sufficient accuracy. What
sufficient accuracy is, is difficult to determine. This is really a question about the sensitivity
of the particle simulation to inaccuracies in the potential (or velocity, or force etc.), i.e. it
depends on the particular problem under consideration. With PIC methods it is often said
that you cannot believe any result about particle structure which occurs on a sub-grid scale
- you should not use such schemes if the phenomenon depends critically on particle motion
on such scales. This is of coarse rather conservative advice, since it fails to distinguish
between the higher order and lower order PIC methods.

We are fortunate that for some particle based methods, there is a convergence proof
which explicitly account for the fact that a PIC method is used [7). The central idea is to
show that using a PIC method introduces an implicit smoothing. One then shows that the
particle simulation with this smoothing converges to the solution of the equations as both
the number of particles increases and the grid of the PIC method (and hence the smoothing)
tend to zero. The error estimates worked out in this proof may be of use in determining
the correct grid size one needs to obtain accurate solutions. (These estimates can also
assist in developing systematic methods for analyzing charge assignment and interpolation
schemes.) The fact that PIC methods are in some sense equivalent to smoothed particle
schemes is interesting, for this indicates that if one is using the smoothed particle approach,
then one might seriously consider a standard PIC method. One can conceivably obtain
similar answers and at the same time have a computationally efficient method. Of course,
with a PIC method it is difficult to control the type of smoothing introduced, but recent
work by Merriman (11] should be of assistance here. (The approach of Merriman is also
useful in that it indicates how one can accurately implement smoothing in the presence of
boundaries.)

The selection of parameters is rather different for the other two methods. In the mul-
tipole method, one chooses the number of terms p in the finite Laurent and power series
expansions. This choice is determined by the desired accuracy. (Again, what this should be
depends on the problem under consideration.) Next, one must select the level of refinement
used when the computational domain is decomposed into boxes. Unlike the standard parti-
cle in cell method, the size of the grid does not influence accuracy. However, the size of the
grid does influence the computational efficiency of the method. In figure 5 we show the CPU
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time required by an implementation of the multipole method [2] on a serial machine (SUN
Sparcstation) for the evaluation of the potential of N randomly distributed particles. Each
of the curves represents the computation performed with different levels of refinement. The
results show that there is a marked difference in the efficiency of the method depending on
the level of refinement used. For small numbers of particles, too much refinement is clearly
undesirable. This fact is expected, since if there are too few particles per box (say less than
p), then we are certainly doing more work by using a p term expansion to represent their
potential.

Choosing the right level of refinement thus presents something of a problem. What
makes the problem more complicated is that the amount of work depends on the distribution
of particles. In figure 6 we show the CPU time for various numbers of particles when they
are distributed in a rectangle with a ten to one ratio. One sees that it is indeed distinct from
the case of particles uniformly distributed in the square. This dependence on the particle
distribution is rather discouraging, since it therfore seems difficult to design an automatic
procedure which would minimize the computation time. Fortunately, as discussed in [2],
it is observed that the work for each level can easily be computed in advance and the
minimum level selected. The key idea is to "dry run" the code, and, rather than carry out
all of the required operations, increment counters based on particle density and the number
of terms in the expansions. Using the value of these counters, the running time can be
well estimated. Due to the recursive nature of the method, this is very easy to implement,
and one can obtain quickly very good estimates of the running times of the multipole code
for several refinement levels. With estimates for the work required by the various levels
of refinement, one just selects the level with the least amount of work and carries out the
computation. This strategy works well and the actual CPU time taken by the program
forms a lower envelope for the timing curves in both figures 5 and 6.

The situation for the particle in cell method with local corrections is analogous to the
multipole code. A certain amount of accuracy is specified, and this dictates the choice
of parameters associated with the charge assignment and interpolation scheme. Once the
accuracy is specified one must select the size of the grid. In figure 7 we show the results of
timings for different size grids and given level of accuracy. (This was a velocity calculation
computed on a Cray XMP [3] - timings for a potential calculation would be analogous.)
Again, one should determine the optimal grid size to minimize the computational effort.
As before, this can be done by "dry running" the code and computing timing estimates
based on particle densities. Rather than compute these estimates for all possible grid sizes,
it is computed for three grid sizes and the minimum of the quadratic interpolant is used to
determine the optimal size.

If the asymptotic estimates are scaled to represent true CPU time, then the constants
appearing in them will depend on on the particular hardware at hand. Certainly, there is
much to be gained if advanced computational hardware can be utilized effectively. I have
not looked into this aspect in great detail (other than implement the codes I work with on
a vector/multiprocessor machine) but I am aware that it is not a simple matter to optimize
any of these algorithms to take advantage of special hardware. For information about
implementing PIC type methods on a parallel and vector processors, you might have a look
at [4] and [51, while for a discussion of some of the difficulties involved in implementing
multipole type methods, one might consult [9] or [6]. One of the problems which arises
in taking advantage of vector/multiprocessor hardware is that the parallel or vectorization
technique must be dynamically determined to reflect the changing nature of the interaction
between the particles.

4. Con lusions. As I said earlier, the three methods I have spoken of by no means
exhaust the set of possible methods, but I think they form a representative sample. One is
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of course interested in specific recommendations for method choice. If I were just starting
out, I would use the direct method. It is very easy to program and you can be assured
of the accuracy of the computation. After a true need for a faster method has developed,
the next choice is between a grid based method and a multipole based scheme. For two
dimensio: e, it is not clear to me that one of the methods is substantially superior over the
other. It is true that controlling the accuracy is easier when using a multipole method - i.e.
it essentially depends on one parameter, p, the number of terms used in the expansions.
For grid based schemes, accuracy is determined by several factors and it takes more work
to find the correct combination to achieve some level of accuracy. Aside from this accuracy
consideration any specific choice should probably be determ .Ied by other factors - such
as the difficulty of implementation, the ability to exploit specific computational hardware,
the ease of incorporating boundary conditions, etc. For three dimensions, there may be a
reason to choose one method over the other, but the choice depends on particle distribution.
If the particles are uniformly distributed then either a multipole method or a grid based
scheme would be acceptable. If the particles are not uniformly distributed, then there
may be good reason to select a multipole method. As mentioned earlier, the network of
computational elements in a multipole method are localized about the particle locations,
and so, if the particles are distributed in a lower dimensional fashion (i.e. along a line or
surface) then the computational network is also of lower dimension. This can mean great
savings, both in computation time and in storage. A grid based method takes no advantage
of the lower dimensionality of the particle distribution - the computational structure fills out
the complete box in which the particles reside. This introduces a significant computational
overhead into the grid based method. Of course if one uses an adaptive grid method, then
this observation must be modified.

REFERENCES

[1] C. R. Anderson, "A Method of Local Corrections for Computing the Velocity Field Due to a Distribution
of Vortex Blobs", J. Comp. Phys., 62, 1988, pp. 111-123.

[2] C.R. Anderson, "An Implementation of the Fast Multipole Method Without Multipoles" , in preparation.
[3] S.B. Baden, private communication.
[4] S.B. Baden, "Run-Time Partitioning of Scientific Continuum Calculations Running on Multiprocessors",

Lawrence Berkeley Laboratory Report, LBL-23625, Berkeley, Ca., 1987.
[5] S.B. Baden,"Very Large Vortex Calculations in Two Dimensions", in Vortex Methods, C. Anderson and

C. Greengard, (Eds.), Lecture Notes in Mathematics, 1360, Springer-Verlag, 1988.
[6] J.E. Barnes, 'A Modified Tree Code: Don't Laugh, It Runs", Astrophysics Preprint Series, IASSNS-AST

89/13, Institute for Advanced Study, Princeton, NJ., 1989.
[7] G.H. Cottet, "Convergence of Vortex-In-Cell Methods for the Two Dimensional Euler Equations", Math.

Comp., 49, 1987, pp. 407-425.
[8] L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations", J. Comp. Phys., 73, pp.

325, 1987.
[9] L. Hernquist, "Vectorisation of Tree Traversals", Astrophysics Preprint Series, IASSNS-AST 88/64,

Institute for Advanced Study, Princeton, NJ., 1988.
[101 R. Hockney and J. Eastwood, Computer Simulations Using Particles, McGraw Hill, New York, 1979.
[11] B. Merriman, 'Smooth Particle Methods on Bounded Domains", Tech. Rept. 89-06, Dept. of Comp.

Sci., Univ. of Chicago, 1989.
[12] A. Mayo, "On the Accuracy of a Class of Momentum Conserving Particle Mesh Methods, and the

Interpolation of Elliptic Functions on Uniform Meshes", IBM Research Report, RC 14306 (#64088),
T.J. Watson Research Center, Yorktown Heights, NY., 1989.

376



x

R. x

- x X

Sx X

Y0

0 2RD

Figure 1

The potential induced by the particles in the disk of
radius R is represented by a finite term Laurent
expansion centered at
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Figure 2

The potential induced by particles in the disk of
radius R is evaluated by interpolating a solution of
the discrete Laplacian. The right hand side for the
discrete Laplacian is constructed by assigning the
charge of the particles to the finite difference mesh.
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The multipole (plain disks) and power series expansions
(dotted disks) used to communicate the potential induced
by the particle at x to the point at o.
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Figure 5

CPU time (in seconds) vs. number of vorticies for
particles uniformly distributed in a unit box.
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ABSTRACT : This paper is devoted to the presentation of a new numerical method for the simulation of the

Bollzmann Transport Equation of semiconductors, the weighted particle method. A detailed presentation of the method

can be found in [1,2] and its mathematical analysis has been performed in [3]. In this paper, we will describe the kinetic

model of the Boluzmann Equation and present the numerical method that we propose. We deal with two different cases:

first, an homogeneous case, and then an inhomogeneous one, where one has to solve a coupled Boltzmann-Poisson

system. The numerical study of this latter case has been done in [4], and is detailed in [5].

1. INTRODUCTION

Most of the numerical simulations of semiconductor devices use the drift-diffusion model [6,7].

This model is based upon Ohm's law (for drift) and Fick's law (for diffusion) and states that the

average velocity of the carriers is proportional to the electric field ; the proportionality coefficient is a

field dependent mobility. This relation is obtained at equilibrium, as a consequence of the balance

between the free acceleration of the carriers and their diffusion by the defects of the crystal lattice. The

time needed for this equilibrium to be reached is the momentum relaxation time (mean time between

collisions), so that Ohm's law is valid as long as this relaxation time is shorter than the time needed

for the carriers to cross the device. But, in submicron devices, some carriers have almost collisionless

(or ballistic) flights, and thus the average velocity can be higher than Ohm's law predicted value
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(6,8]. In fact, the drift-diffusion model does not take into account the main features of transport in
submicronic devices [9] : the presence of ballistic carriers, the large proportion of high velocity

("hot") carriers, and the large gradients of carrier density and temperature.

For the simulation of hot electron effects, a more involved hydrodynamic model has been
proposed by many authors [8,10,11]. It consists of conservation equations for the mass, momentum
and energy, and is deduced fiom the Boltzmann Transport Equation by the moment method, under
the assumption that the distribution function of the carriers is a drifted Maxwellian. Scattering
processes are accounted for by empirically defined relaxation times for momentum and energy at the
right hand side of these conservation equations. Some other modifications [12,13] incorporate
thermal effects. Nevertheless, this model hardly describes the ballistic and hot electron effets, and no
completely satisfactory hydrodynamic model seems to be available yet.

The kinetic model (the Boltzmann Equation) then seems to give the most accurate description of
the physics attainable by numerical computations. In this paper, we will recall the main features of the
semiconductor Boltzmann equation, and describe the weighted particle method. We will provide the
results of numerical simulations in two different cases. First, the homogeneous field model provides a
nice framework for the validation of our method particularly concerning the deterministic treatment of
the collision term [1,2]. The physical situation is that of an infinite sample of semiconductor
imbedded in a uniform electric field. This model also provides the stationary velocity and energy as a
function of the applied electric field, as well as the relaxation times for energy and momentum [14],
which are useful in a hydrodynamical model. Second, we turn to the simulation of a one-dimensional
inhomogeneous structure, which requires to solve a coupled Boltzmann-Poisson system [4,5]. For
more details about the model, the numerical method in both the homogeneous and inhomogeneous
cases, we refer the reader to [1,2,4,51 . The numerical analysis of the method in the homogeneous
case has been performed in [3] . For a more detailed physical description of the kinetic model, we
refer the reader to [6,15,16].

2. THE SEMICONDUCTOR BOLTZMANN EQUATION

We will suppose that the electrons are the only charge carriers in the device. This is a reasonable
assumption for many N-doped unipolar devices. The Boltzmann equation for the electron distribution
function f(x,k,t) (where x is the position, k the wave-vector and t the time) is written in the

following way:

ct f + v(k).V1 f- (q/K-) E(xt).Vk f = Q(f) (x,k,t)
xe QcR3 ;ke BcR3 ,t>0. I
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In the equation (1), 12 stands for the device geometry and B for the first Brillouin zone. q is the

positive elementary charge and N the reduced Planck constant. The field v(k) is given and provides

the velocity versus wave-vector relationship for an electron in the semiconductor material. Q(f) is the

scattering operator describing the interactions of the electrons with the lattice defects. The electric field

E(x,t) is related to the electron density n(xt) via Poisson's equation:

*It)= -VO(xt) (2)

-A (x,t) = (nD(x) - n(x,t)) (3)

nix,t) = Jf x,k,t) ps dk (4)

e and p, are respectively the permittivity of the material and the density of states in the k-space, and

have known val ' es ; nD(x) is a given doping profile resulting from the fabrication technology.

For quantum mechanical reasons, it may happen that one needs to distinguish between several

species of electrons which are characterized by different (effective) masses and thus, different

functions v(k) . These different species are called valleys. For instance, in Gallium Arsenide, three

valleys have to be considered, the r, L and X valleys. In this case, the model consists of as many

distribution functions as valleys, each of them solving its own Boltzmann equation. These different

equations are coupled in two ways: first, via an "intervalley" collision operator, of a similar form as

the "intravalley" one (see below), second, via Poisson equation. We refer to [(1,2,5,6,91 for more

details. For the sake of simplicity, we will describe the kinetic model and the weighted particle
method for a single valley model, and thus, for a single distribution function.

The equations (1)-(4) must be supplemented by initial and boundary conditions:

f(x,k,O) = fo(x,k)
f(0,k,t) = gk,t) for v(k) > 0
f(L,k,t) = gLik,t) for v(k) < 0
0(0,t) = 04t) , O(L,t) = C.t)

with f', go, gL, *0 and *L suitably given.

The integral scattering operator Q(f) is written:
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(xk,t)

=J [S(xk',k) f(x,k',t)(1-tix,k,t))- S(x,k,k') (x,k,t)(1- f( xk',t))] dk' (7)

S(x,k,k') are known transition rates depending upon the physical nature of the involved scattering
processes. The (1-) factors originate from Pauli's exclusion principle and make Q a non linear

operator. For some examples of transition rates, we refer the reader to [2,5,6,17]. The overall

transition rate may be written in the form:

S(x,k,k') = Y O(x,k,k') ()-(k) ± ]i wp) (8)

The sum is to be taken over + and -, respectively standing for the emission and the absorption of a

phonon of energy Ncop by an electron, and over all the possible scattering mechanisms. The Delta
function accounts for the conservation of the energy of the electron/phonon system during the

collision. The function (x,k,k') depends upon the nature of the scattering mechanism.

The coupled system of Boltzmann equation (1) and Poisson's equation (2,3,4) is non linear and
induces collision damped plasma oscillations of high frequencies. In the practical situations, the

doping profile function nD(x) has very steep gradients. The overall problem is a high dimension stiff

problem.

3. THE NUMERICAL METHOD : GENERAL PRESENTATION

The most widely spread numerical method for solving the semiconductor Boltzmann equation is
the Monte-Carlo method (cf. [6] and references therein), although other methods have been used in

particular geometries (cf. Reed's method [18]) or for particular collision operators (see the recent
method developped by Baranger [9] or Kuivalainen and Lindberg [ 19]). The Monte-Carlo method is

quite noisy and thus, the affordable number of particles is generally not sufficient to get a sharp

resolution of the distribution function, by statistical average. The moments of the distribution function

such as the current and energy densities can be recovered with a sharp resolution, but only through

time averages which make the description of the transient regimes uneasy. The new method and the
new algorithms which we will describe in this paper are somehow derived from the Monte-Carlo

method, but are intended to provide a more accurate numerical approximation.

The weighted particle method was first introduced by G.H. Cotter, S. Mas-Gallic and P.A.

Raviart [20,21], for viscous perturbations of the incompressible Euler equation. Then the method was
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adapted to the treatment of collision terms in kinetic equations [221. Its first application to the

semiconductor Boltzmann equation has been done in [1,21 and an error analysis relevant to this

particular physical context has been performed in [3]. In the deterministic particle method, the

particles move along the characteristics of the convective (first order differential) part of the equation,

while the collision term is taken into account through the variation of the weights of the particles. The

collision integral is evaluated by a discrete quadrature where the particles themselves play the role of

quadrature points.

The weighted particle method is based upon the approximation of the distribution function by a

sum of Delta measures:

N
iAx,k,t) = fl~x,k,t) = oi fi~t) 5(x -x t)) 0 S(k -ki(t)) (9)

i=lI

xi(t), k,(t), fi(t) and wj(t) are respectively the position, the wave-vector, the weight and the control

volume of the particle i ; they evolve in time according to :

dxi v(ki) x4(0) =x°i (10 a)
dt

=k1- - El(t) ki()=k

df!- - Qi(t) fi(O) = (11 )dt h

Co1 t) = oo (12)

where E1(t) and Qj(t) are respectively the approximations of the electric field and of the collision

operator acting on the i-th particle. The initial x9, k, f and o0 are chosen so that:

N

fo(x,k) (00. f 0,S(x-x°)® 0 k-k°) (13)
i=l

The time differential system (10,11) can be solved by any classical scheme. In our

computations, we used either the order 2 Adams-Bashforth scheme or a mixed Adams-Bashforth and

backwards Euler scheme.

To define Q1(t), we introduce a cut-off function L.(x) such that:
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Wx (0 ; 9(x) =C4-x) ; C(x) dx =1 (14)

where C is a compactly supported function. We delocalize the integral operator Q(t) in position

using this r function, and then we perform a numerical quadrature using the particles as quadrature

points. Therfore we let, omitting the t-dependence of x,, k. and f, (see [4] for details):

N

Qjt) = I [Spoxj.kj,ki) fj 1- fi) - Sp(xi,ki,kj) fj(1 - fj)] Wxj -xi) (oj (15)
j=1

The transition rates Sp are smooth regularizations of the transition rates S given by (8) ; they are

written :

Sp(x,k,k'l = O (x,k,k') p(t(k ') - e(k) + Ti cop) (16)

where 4p is a compactly supported function defined in a similar way as C. . The computation of

E,(t) will be detailed in section 5.

4. THE HOMOGENEOUS CASE

Throughout this paragraph, we will suppose that the electric field is an external electric field
denoted by E which is uniform (in space) and constant (in time). We assume that the problem is
homogeneous in space and that nD(x) = nD is independent of x. Thus, the dependence upon x

vanishes as well as the coupling with the Poisson equation. We assume the axisymmetry of the wave-

vectors with respect to the field axis, and describe a wave-vector k by its two components k, and
k2, respectively parallel and perpendicular to the field. Equations (9,10 b,l 1,12,13,15) describe the

weighted particle method in this particular case.

Figure 1 shows a comparison between our method and the Monte-Carlo method [17], for a
homogeneous sample of Gallium Arsenide doped at nD = 5.1015 impurities per cm 3 , at temperature
T = 77 K, imbedded in a constant electric field E = 10 ky/cm. The band diagram of Gallium
Arsenide was described by a standard three valley model, and the integral operator was of the form

(7,8), with about 40 different scattering mechanisms [2]. Figure 1 displays the mean velocity, mean
energy and density versus time and the results show a very good agreement between our results and
the Monte-Carlo method. Figure 2 displays the three dimensional views of the distribution function,
during its time evolution. With the homogeneous model we can compute the stationary characteristics
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of Gallium Arsenide [14]. Figure 3 shows the stationary mean velocity and mean energy versus

electric field and figure 4, the momentum and energy relaxation times versus energy. These
informations are useful for hydrodynamic simulations. Finally, we mention that the homogeneous

field model can also be used to describe the bidimensional transport of electrons parallel to a

heterojunction interface [23].

S. AN INHOMOGENEOUS CASE

In this paragraph, we concentrate on a one-dimensional inhomogeneous case, for which the

solution of the coupled Boltzmann-Poisson system is necessary. More details can be found in [4,5].

In this inhomogeneous case, the model consists of the Boltzmann equation (1) and of the Poisson

equation (2,3,4). The mutual Coulomb interaction between charged particles is fully taken into
account. The electric field has a constant direction, and we use an axisymmetric geometry relative to

its axis, like in the homogeneous case. We used the following doping profile, already used by

Baranger in [9] :

nl(x) = N' for 0<x:5,xi

=N- for Xl<X<X2

=N +  for x2 <x<L

with N- = 2.1015 cm 3 , N+ - 1018 cm"3, L= 1,2 gm, xt =0,4im and x2 =0,8tm. The

behaviour of this N+-N-N + structure is dominated by the dynamics of the carriers in the N- region.
However, a sharp numerical description of this region is not easy because, due to the large

inhomogeneities (N+/N" = 500), the numerical errors on the electron density in the N+ region are of

the same order of magnitude as the density itself in the N- region. Moreover, if the trajectories of the

particles are not accurately solved, the fast particles may jump over the peaks of the electric field
which stand near the Nt-N and N-N~junctions, instead of "seeing" them.

Again, equations (9) to (15) describe the weighted particle method. We only need to detail the
computation of Ei(t) (10 b) using the Poisson equation. We considered two methods. First the

classical "Particle In Cell" (PIC) method [24,25], in which one introduces a mesh of equally spaced

points, and an interpolation function. An assignment procedure using this function gives the
approximation of the electronic density at the grid points. The Poisson equation is then solved with a

finite difference scheme, to get the approximation of the electric field on the grid poi. he field is

finally interpolated at the location of the i-th particle, to obtain the value of Ei(t).

The second method uses the Green's functions of.Poisson's equation and relies on an exact
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representation of the mutual Coulomb interaction between the particles. Indeed, an integration of (9)
with respect to the wave-vector gives a particle representation of the electronic density:

N
nh(x,t) = Y, oJ fit) 8(x - xit))

j=1

The "exact" electric field, solution of Poisson's equation (2,3) for this approximate density can be
computed at the location of the i-th particle by means of the Green's kernel K(x,y) of Poisson's

equation with periodic boundary conditions:

aK-x (xy {-) ;IOy -IL,y) ; K(x,y) dy = 0.

Therefore we let [5]:

Ej(t) -0 K(xi(t),y)nD(y)dy- =I j fi t) K( - _L

[fOL j=1

where to and L are the prescribed boundary conditions on the potential at x=0 and x=L.

We present simulations of a GaAs N+N-N + structure at T = 300 K, and we compare our
results with those obtained by Baranger [9]. In our simulations, we used a two-valley model for
GaAs, and the physical description of the interactions as given by formula (8) while Baranger's
model involves a simplified 2-valley relaxaton time model for the description of the collisions.

Figure 5 shows the electronic density profiles at t = 1 ps : the qualitative agreement with
Baranger's results is satisfactory, although our results are more noisy. Indeed, the effect of including

a second valley is the same for both results : the total electronic density increases in the N-N*
junction area, where the I-L transfer occurs (i.e. where an important fraction of electrons belonging

to the r valley reach high enough energies to transfer into the L valley by means of the collision

processes). The potential slightly decreases in the N region (Figure. 6), and thus the field curvature is
changed near the N-N + junction (Figure 7). The mean total current (which is a function of time only)
has an oscillatory transient regime, and then converges towards tl-e value found by Baranger in [9]
(Figure 8). The total mean velocity is lower in a two-valley model than in a single-valley model, and it
reaches its maximum further from the N-N+ junction (Figure 9). Figures 10 presents a snapshot of
the distribution function in the L-valley at t = 1 ps as a function of position and energy, showing

that the I-L transfer clearly occurs the N-N+ junction. We refer the reader to [91 for a detailed

390



V1

discussion of the involved physical phenomena.

6. CONCLUSION

We have presented a new numerical method for the Boltzmann equation of semiconductors,
based on a deterministic treatment of the collision opertor which may provide an accurate description
of the physics of electron transport. It proved to be very satisfactory in the homogeneous model and
to provide useful informations for more macroscopic models. In the inhomogeneous case, the
comparisons show that the method is reliable and is able to give an accurate picture of the physical
phenomena occuring in submicron structures.
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Figure : Distribution function in the L valley as a function of the distance in
the structure (glm; increasing from right to left) and of the energy (eV).
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NUMERICAL SIMULATION OF RAREFRIED GAS FLOWS

Hans Babovsky

AGTM, Universitit Kaiserslautern

This talk is concerned with the progress of the Arbeitsgruppe

Technomathematik (AGTM) in developing a simulation code for

rarefied gas flows and in performing 2d and 3d calculations for

realistic situations. This work has been done in connection with

a project in the H & D program for the European space shuttle

Hermes.

1. Theoretical aspects

The reference point in the development of our simulation code is

an appropriate Boltzmann equation for the description of rare-

fied gas flows. Our intention is to yield approximate solutions

to this equation.

The Boltzmann equation for a density function f = f(t,x,v) in

phase space has the form

Df = J(ff)

with the free streaming operator

Df = (2 + v' )f

and the collision integral J(f,f). The idea underlying our

scheme is to approximate f by a system of N moving particles

(xi(t),vi(t))i& N . Precisely, the problem is to invent an (arti-

ficial)"dynamics" for the N-point system in such a way that the

simulated solution keeps close to the exact solution of the

Boltzmann equation.

This dynamics is constructed by decoupling free flow and colli-

sions. While the first step is performed easily by a translation

of the x-coordinates:

(xi,vi) - (xi+At.i,vi) ,
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the second step imitating collisions through discontinuous

changes of velocities is crucial for an efficient simulation

scheme. In our code, this is done by choosing triples (v.,wi,b i)

consisting of velocity pairs (vi,w i ) and of (collision) para-

meters b. and by applying an appropriate transformation i to1
new newcalculate the new velocities (vn e,wn i (compare [11):

new V(vIv1 = ( i'wib1 1

new
w ine = f( w i lvi lbi

In order to be consistent with the Boltzmann equation, choosing

the triples requires certain conditions to be satisfied (see

[21). There are several possibilities: On one hand the purely

random game called "Monte Carlo version", on the other hand

so-called "Low Discrepancy versions" reducing fluctuations. (Our

code presently applied uses random numbers as well as Low

Discrepancy sequences. A detailed description of this code will

be provided in [4].) The use of these schemes is justified by a

Law of Large Numbers stating that the simulated solutions are

good approximations to the exact solutions if the particle

number N is large enough. (A proof of this Law of large Numbers

goes along the lines of the proof in [21, [31.)

However, in practical calculations one is forced to use particle

systems much too small lo be in the (theoretical) domain of

validity of the Law of Large Numbers. This was motivation for, us

to study the hehaviour of small particle systems. Here, ergodi"

theory yiel strong mathematical results [5]. We could

- show that time averages of small particle systems do not re-

present solutions of the Boltzmann equation but are affected

with a systematic error which is expected to be the smaller,

the bigger the particle system is;

- for simple cases provide an exact formula for the systemat ic

error which allows to perform corrections to the simulated

solutions;

- prove that boundary conditions - for example at artificial

boundaries limiting the region of calculation - can have a

strong influence on the systematic error; thus, well perform-
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ing boundary conditions at non-physical boundaries may have a

strong impact on the validity of the scheme.

2. Aspects of modelling

Aspects of modelling play an important role when simulating gas

flows in realistic situations. Aspects of particular tnterest

are

- boundary conditions

- interior energies

- gas mixtures

- chemical reactions.

Boundary conditions

They have to be modelled in such a way that coefficients of

interest are obtained correctly. For flows around bodies, of

particular interest are for example drag, shear stress and lift

coefficients. As experiments show, several of these depend in a

very sensitive way on the type of boundary conditions used. As a

consequence, a simulation code has to be flexible enough to

include various classes of boundary conditions in order to

properly model the situation of interest.

We have compared different classes of boundary conditions

including

- specular reflection

- diffuse reflection with accomodation coefficient

- the Cercignani-Lampis model.

To this end we have performed 3d calculations of flows around

flat discs with different angles of attack a, and have compared

these results with experimental results obtained by Legge [63.

Some data for Argon are presented in figures I and 2 where we

compare the pressure drag coefficient versus the accomodation

coefficient and versus the Knudsen number. In figure 2, the

experimental data are represented by the points, while the lines

show the simulated results. Similar calculations have been done

for the gas Nitrogen.

Interior energies

Here, we are mostly interested in imitating rotational energies

which becomes necessary when simulating polyatomic gases. The
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most frequently used model on the market is the Larsen-Borgnakke

model. We have analyzed its mathematical structure and extended

it to a larger class of models. Furthermore, we have implemented

Kuscer's VHS model which from a physical point of view seems

much more reliable than the models described above. We have

considered also certain geometrical models like ioaded sphere

models.

Investigations of shock structures have shown significant

dependence of the results on the model. (Results are described

in papers to be published soon.) However, in realistic situa-

tions the choice of the most appropriate model may fail due to

the lack of sufficient experimental data.

Gas mixtures

Binary gas mixtures with approximately equal densities are

readily included in our code. Big differences of densities,

however, required the introduction of weighted particles which

forced us to slightly change the collision model.

This has now also been successfully implemented. As an example,

figure 3 shows shock profiles in a two component gas.

Chemical reactions

For the modelling of chemical reactions much theoretical work is

still necessary. There are several models on the market but none

of them is very satisfactory from a theoretical point of view.

From a practical point of view, further numerical investiations

and experiments are necessary to test the relevance of these

models.

3. Computational aspects

Presently, we are mainly concerned with the simulation of 2d and

3d calculations of flows around bodies of different shapes. For

example, we have performed 2d calculations around double

ellipses and 3d calculations around flat discs with different

angles of attack at Mach 15.6 (mainly in order to compare

boundary models with experimental data) and around a delta wing

with Knudsen numbers down to 0.01.

404



For our calculations, we used a rectangular grid structure

(which allows to easily refind particles after free flow) with

an adaptive grid refinement. This cell system turned out to be

efficient and to reduce the computational effort quite well.

The complete code (including all the features described above)

and has been proven to be approximately five times faster than

other simulation methods. For further details, see [4].

All calculations have been performed on the VP 100 in Kaisers-

lautern and the VP 400 in Karlsruhe.
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THE PERIODIC BOLTZMANN SEMICONDUCTOR EQUATION.

J.F. Bourgat ', R.Glowinski 2, P. Le Tallec ', J.F. Palier4

Extended abstract

This paper is concerned with the numerical solution of the Boltzmann semiconductor
equation. In the case of a problem homogeneous in space, the electronic function is solution
of the integro-differential equation

,9f _qE. Vkf=Q(f) in 1 3

f(k)dk = 1.

Here, Q represents the linear scattering operator given by

Q(f) = I(s(k'; k)f(k') - s(k; k')f(k))dk'.

Our main objective is the development of a fast deterministic solution procedure for the
numerical computation of the steady state solutions of the above problem.

In this framework, our discretization strategy is based on an upwind finite difference
approximation of the gradient terms and on a deterministic conservative calculation of
the integral operators. The resulting algebraic system is then solved by a least squares
methodology which reduces the system to a quadratic minimization problem to be solved
by a standard conjugate gradient algorithm.

In the axisymmetric steady case problem with periodic boundary conditions, which
models superlattices, this methodology gives nice results for all values of the electric fields.
These results are confirmed by an unsteady analysis which, although more expensive nu-
merically, gives additional information on the relaxation behavior of the distribution func-
tion towards its steady state.

1 INRIA, Domaine de, Voluceau, 78153 Le Chesnay Cedex, France
2 Dept. of Mathematics, University of Houston, 4800 Calhoun Road, Houston, Texas

77004 USA
s Universiti Paris Dauphine, Place du Mar~hal de Lattre de Tassigny, 75775 Paris

Cedex 16, France
C ONET, Laboratoire de Bagneux, 196 av. Ravera, 92220 Bagneux, France
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INCOMPRESSIBLE FLOW COMPUTATIONS USING

VARIOUS VELOCITY-PRESSURE ELEMENTS+

T.E. Tezduyar, D.K. Ganjoo, and R. Shih
Department of Aerospace Engineering and Mechanics

and Minnesota Supercomputer Institute
University of Minnesota
Minneapolis, MN 55455

Abstract

A comparative investigation, based on a series of numerical tests, of vari,',g
velocity-pressure elements used for incompressible flow computations is presented. These
elements are implemented in conjunction with the one-step and multi-step temporal
integration of unsteady Navier-Stokes equations. The group of elements studied includes
the element with a Petrov-Galerkin stabilization that allows equal-order (bilinear)
interpolation functions for velocity and pressure. The test cases chosen are the standing
vortex problem, the lid-driven cavity flow, and flow past a circular cylinder.

1. Introduction

In this paper we conduct a comparative study of various finite elements used for
incompressible flow computations based on the velocity-pressure formulation of unsteady
Navier-Stokes equations. The elements covered by this study are QIP0 (bilinear velocity/
discontinuous piecewise constant pressure), Q2Q1 (biquadratic velocity/ bilinear
pressure), pQ2Q1 ("pseudo" biquadratic velocity/ bilinear pressure), Q2PI# (biquadratic
velocity/ discontinuous piecewise bilinear pressure), Q2PIA (biquadratic velocity/

discontinuous piecewise linear pressure), pQ2PIA ("pseudo" biquadratic velocity/

discontinuous piecewise linear pressure), and Q1QI/E (bilinear velocity/bilinear pressure
with Petrov-Galerkin stabilizer). We implemented these elements by generalizing the one-
step formulation developed by Brooks and Hughes [1] for the QIP0 element, and also by
using the multi-step formulations presented in Tezduyar, Liou, and Ganjoo [2]. In all these
formulations we use the streamline-upwind/Petrov-Galerkin (SUPG) method [ 1,2] to
prevent the spurious oscillations that might appear in the presence of dominant advective
terms.

In the onc-step formulation the SUPG supplement to the weighting function is
applied to all the terms in the momentum equation. For the element with equal-order
(bilinear) interpolation functions for velocity and pressure, in addition to the SUPG
supplement, another Petrov-Galerkin supplement is added to the weighting function to
stabilize the element. We will refer to this supplement as the PSPG ("pressure-stabilizing"
Petrov-Galerkin) supplement. The PSPG supplement is defined by utilizing the ideas
introduced by Hughes and Franca [3]. The Petrov-Galerkin formulation introduced in [3] is
capable of accommodating arbitrary orders of interpolation for the (steady-state) solution of
Stokes problem.

This research was sponsored by NSF under grant MSM-8796352.
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The T6 formulation [2] is an extension of the T3 formulation [2]. The T3
formulation is a three-step method and starts out with a splitting scheme in which the
pressure and the viscous terms are treated implicitly in the first and third steps while the
advective terms are treated implicitly in the second step. This type of splitting is a special
case of the kind found in the 0-scheme (4]. In the T6 formulation, each step of the T3
formulation is subdivided into two sub-steps to isolate the advective terms, and the SUPG
supplement is applied only to the sub-steps involving the advective terms. A PSPG
supplement is added to the weighting function in the "Stokes sub-steps" when using equal-
order (bilinear) functions for velocity and pressure.

We consider three numerical tests: the standing vortex problem [5], the lid-driven
cavity flow at Re=400, and flow past a circular cylinder at Re=100. The purpose of the
standing vortex problem is to determine the level of numerical dissipation involved in a
numerical solution technique. The lid-driven cavity problem involves singularities in the
pressure field and, therefore, is regarded as a stringent test case. The cylinder problem has
been studied by several researchers in the past (see for example [6]) and has become a
benchmark problem [2].

2. The Governing Equations

Let Ll and (0,T) denote the spatial and temporal domains with x and t representing
the coordinates associated with fQ and (0,T). We consider the following velocity-pressure
formulation of the incompressible Navier-Stokes equations:

p(au/t+u-V u)- V.C =0 on Lx(0,T), (1)

Veu=O on Q x (0,T), (2)

where p and u are the density and velocity and o is the stress tensor given as

0 =-pI+2giE(u) (3)

with

E(u)=(Vu+(Vu) T)/2. (4)

Here p and g. represent the pressure and viscosity while I denotes the identity tensor. Both
the Dirichlet and Neumann type boundary conditions are taken into account as shown
below:

u =g on rg , (5)

nea = h on i , (6)

where r, and rA are complementary subsets of the boundary r.
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3. Spatial and Temporal Discretizations

Let PE denote the set of elements resulting from the finite element discretization of

the computational domain Ql into subdomains fle, e=l,2,...,nej, where nel is the number of

elements. We associate to C the finite dimensional spaces Hkh and Hmh, where k and m
represent the orders of the interpolation functions used. The trial and test function spaces
are given as

Su= IuhIuIhe (Hkh ) nsd,Uh=gh on rg j , (7)

vh = (wh I wh E ( Hkh )nsd, wh -0 on rg ) , (8)

S (9)

where nsd is the number of space dimensions.

The one-step formulation employed in this work is essentially the same as the one

used in [1]: find uheS and phe Sh such that
up

f wh [p (auh /at+uh. V uh)d + f (wh):oh&Q

nel f 8h. [ p (uh/t + uh . Vuh) -V • hI dfl

e=lIr

+jqhV.uh d"l = Jwh - hh dr, Vwh6 V u , V qhe Vp. (10)

Q ~ rh

Here Sh is the streamline-upwind / Petrov-Galerkin (SUPG) supplement to the weighting

function wh [71, and eh is another Petrov-Galerkin (PSPG) supplement to stabilize the

element against pressure oscillations [3,71. We define Eh as follows:

Eh = E (l/p)Vqh (I I)

with
E= ezeh/(2IIu*ll), (12)

where e is a free parameter (which we normally set to 1), h is the element length, u* is a
global velocity, and
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I Re'/3 0 Re' 3
ze =(13)

1 Re*>3I

The "Reynolds number" is defined as

Re* = Ilu*ll h / (2v) , (14)

where v is the kinematic viscosity. For the limiting values of Re* the expression for E
takes the following forms:

E-4 eh /(211u*ll) forRe* .-.o , (15a)

E--) eh 2I(12v) forRe* - 0 (15b)

The semi-discrete equations corresponding to equation (10) can be written as

follows:

M, a+ N +(v) + v -Gp =F, (16)

GTr v + M a + N,(v) + Ke v - GE p = E + Fe, (17)

where v is the vector of unknown nodal values of uh, a is the time derivative of v, and p is

the vector of nodal values of ph. The matrices M, N, K, and G are derived, respectively,

from the time-dependent, advective, viscous, and pressure terms. The vector F is due to
the Dirichlet and Neumann type boundary conditions (i.e. the g and h terms in equations
(5) and (6)), whereas the vector E is due to the Dirichlet type boundary condition. All the
arrays with a superposed tilde can be decomposed into their Galerkin and SUPG parts:

M= M + M8, (18)

R=N+N8 , (19)

SK + K8 , (20)

G G+G8 , (21)

=F +F 8 , (22)

where the subscript 8 identifies the SUPG contribution. Similarly the subscripte identifies
the PSPG contribution.
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Remarks

1. The PSPG perturbation is employed only when using equal orders of interpolation
for velocity and pressure.

2. The equation systems (16) and (17) can be solved implicitly. When using equal-
orders of interpolation the unknowns are ordered node by node leading to a
reasonable bandwidth; this is defined as the consistent (C) system. However when
using unequal orders of interpolation for velocity and pressure, we reorder the
unknowns in such a way that all unknown velocities appear before unknown
pressures; we define this as the consistent-reordered (CR) system.

3. The equation systems (16) and (17) can also be solved by treating the velocity
explicitly in the momentum equation. The way the QiPO element is used in [2]
leads to a symmetric coefficient matrix for pressure. The Q1Q1/e element leads to
a nonsymmetric coefficient matrix for pressure due to the presence of PSPG
perturbation terms. However, if the PSPG terms which cause such nonsymmetry
are neglected, then the coefficient matrix for the pressure can be "symmetrized". All
explicit one-step computations presented in this paper are based on such a
symmetrization, and the results are obtained with 2 passes.

The T6 formulation [2] is described as follows:

findh sh r such that

Jwh .p ((h huI O~ h ,VUh )d
fin Un+ nn

5w*p((Un+0_Un)/(OAt)+uneVun)df

I~ * p ( Un+ 0 - n ) (0 At )

e=1 ir

Ih h h+Un•VuP)]dQ 0, VwhEV u; (23)

h hh bfind un+ 6 (Sh h+0 and Pn+h e Sh such thath ~hi h

wh • p (U n+6- Un+0) / (OAt) df + fe(wh):oC. dK2

"nel Eh p(h hh

I j Jeb [p(Un+6 _ Un+ 0) / (OAt) -V 0 n+] d
e=l

" JqhV.u +odQ= fwheh h+0 VWhE Vh V qhEV ; (24)

Qrh
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find U E10r (SU +,1e such that

-h h
JWh. p (( U n 1 -- Un..+ /( 1-20 )At)) df

rh h -rhhd VwhE V;h (25)+ Je(Wh):g + ~dQ- jw~ +O
Q rh

find Une h e(S~ h +1 such that

Jwh . p ((Uh+e~i)( h -eAt h h~~

+~ f~h . [p ( uh -h 12)At)
Un+1-6 un+1J0  2A

+ U h h V~ 1 )dfo0, V whEVh; (26)

-h h +
find U,+, C (S~ such that

h h h
+ h.p(U~ Un+1- eO~ + un+io ,) fl=0 V he -VQ 0 27

f h -h

+nl Un+,_ fh[uh 1 u+)(At~.~ld

hh.p(h ; hh

" jqhVouh do flwh hh ,Vh ,Vh.(8
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Remarks

4. The parameter 0 is the one used in the 0-scheme [41; we set it to 1/3.

5. Unlike the T6 algorithm described in [2], we add the SUPG supplement in all
stages involving the advection term, i.e. in equations (23), (26), and (27). The
PSPG supplement added in equations (24) and (28) is for the Q1Q1/ element
only.

6. The matrix forms corresponding to equations (23), (25), (26), and (27) can be
solved implicitly or explicitly as described in [2]. The matrix form of the two
"Stokes sub-steps", i.e. equations (23) and (28), are quite similar to the matrix
form of the one-step formulation; they can be solved implicitly or by treating the
velocity explicitly. Except for the Q1QI/e element, the results presented in this
paper are based on the explicit treatment of all sub-steps, and are obtained with 5-3-

3-3-5-3 passes. For the Q1QI1/ element the "Stokes sub-steps" are treated
implicitly, and the results are obtained with 5-1-3-3-5-1 passes.

4. The Velocity-Pressure Elements Used

The velocity-pressure elements used in this paper are shown in Figure 1.

QIPO Q2QI pQ2QI Q2Pl#

0 0 Velocity node

00 Pressure node

Q2PIA pQ2P1A Q1QI/E

Figure 1. The velocity-pressurte elemenats used.

A
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We now describe each element briefly.

QIPO This element employs bilinear interpolation for velocity and discontinuous
piecewise constant interpolation for pressure. It does not satisfy the Babuska-Brezzi
condition and is knowr, Lo suffer from spurious pressure modes. Nevertheless it is a
popular element.

Q2Q1 This is another popular element; it employs biquadratic interpolation for
velocity and bilinear interpolation for pressure.

pQ2QI This is the "pseudo" version of the Q2QI element in which the velocity is
piecewise bilinear over each sub-element. In Figure 1 these sub-elements are denoted by
dashed lines.

Q2P1# This element uses biquadratic interpolation for velocity and discontinuous
piecewise bilinear interpolation for pressure. It does not satisfy the Babuska-Brezzi
condition and is known to produce spurious pressure modes.

Q2P IA This element employes biquadratic interpolation for velocity and piecewise
discontinuous linear interpolation for pressure.

pQ2P1A This is the "pseudo" version of the Q2PIA element in which the velocity is
piecewise bilinear over each sub-element. In Figure 1 these sub-elements are denoted by
dashed lines.

QIQI/e This element employes bilinear interpolations for both velocity and
pressure. Although this element does not satisfy the Babuska-Brezzi condition, it can be
stabilized by adding a PSPG supplement to the regular weighting function.

5. Numerical Tests and Observations

Although for all elements computations were performed with both one-step and T6
formulations, we only show the selected results for the T6 formulation. For the purpose of
comparison, in each problem the meshes generated by using different elements have the
same distribution of velocity nodes. The nodal values of the pressure, stream function, and
vorticity are obtained by least-squares interpolation.

The standing vortex problem

This test problem was suggested to us by Gresho (see [51). The purpose of the test
is to get an indication of how much numerical dissipation a formulation introduces. The
flow is inviscid and is contained in a 1 x 1 box. The initial condition consists of an
axisymmetric velocity profile with zero radial velocity and with the circumferential
velocity given as u0 = ( 5r for r <.2, 2-5r for .2 < r <.4, 0 for r > .4). Since this initial
condition is also the exact steady-state solution, the numerical formulation should preserve
this "standing" vortex as accurately as possible. The finite element mesh is uniform and
contains 20 x 20 elements for QiP0 and QIQ1/e elements. For the higher-order elements
we use 10 x 10 elements. The time step is 0.05; based on a constant "element length" of
0.05 this results in a peak local Courant number of 1.0.
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Some of the solutions obtained at t = 3 (i.e. after 60 time steps) ar . shown in
Figures 2-4. The table below shows, for various elements, the percentage of the vortex
kinetic energy retained after 60 time steps.

Element One-step implicit One-go explicit T6eqp ci

QIPO 22.6% 22.6% 94.7%
Q2Q1 Unstable Unstable Unstable

pQ2Q1 Unstable Unstable Unstable
Q2Pl# Unstable Unstable Unstable
Q2P1A 84.5% 84.5% 92.7%

pQ2P1A 85.5% 85.4% 91.7%

Q1Q1/e 93.7% 86.9% 88.2%

Clearly the T6 formulation is less dissipative than the one-step explicit formulation.
Although with the T6 formulation all elements seem to yield comparable levels of
dissipation, with the one-step formulation the QIPO element shows significantly higher
dissipation. Moreover we observe that for higher-order elements the difference in energy
dissipation between the one-step and T6 formulations is not so large as it is for the QIPO
element. We also note that the solution obtained with the pQ2PIA element is very close to

the solution obtained with the Q2P1A element. We found that the Galerkin one-step
formulation is unstable for all elements except for the QIPO element which is only
marginally stable even with an implicit (consistent-reordered, expensive) formulation.

The lid-driven cavity flow

In this problem the lid of the cavity has unit velocity; based on this velocity and the

dimension of the cavity the Reynolds number is 400. We choose a uniform grid of 32 x 32

elements for QIPO and QIQI/e elements. A uniform grid of 16 x 16 elements is used for
the higher-order elements.

Some of the steady-state results are shown in Figures 5-7. The results obtained
with the higher-order elements (i.e. Q2Q1, pQ2Q1, Q2PI#, Q2PIA, and pQ2PIA) are
all in close agreement. Also, the results obtained with the QIPO element is close to those
obtained with the QIQI/c element. The differences in the solutions obtained with the
higher- and lower-order elements can be attributed to the size of the leakage area near the
moving lid.

Flow past a circular cylinder

In this problem we have a uniform upstream flow; the Reynolds number based on
the cylinder diameter is 100. The different meshes employed are shown in Figure 8.

Some of the steady-state results are shown in Figures 9-11. Except for the Q2PI#
element, which produces oscillations in the velocity field all around the cylinder, the results
obtained with the higher-order elements (i.e. Q2QI, pQ2QI, Q2PIA, and pQ2PIA) are

all in close agreement. For the QIPO and QIQI/e elements we observe some small
differences in the pressure field; these differences become slightly more noticeable in the
upstream region. Unlike it was in the driven cavity problem, both higher- and lower-order
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elements result in solutions which are in good agreement when one inspects the velocity
and the variables derived from the velocity. Pressure fields, on the other hand, exhibit
some very small differences. Te drag coefficients obtained with these elements are 1.162
(QIP0), 1.149 (Q2PIA), and 1.154 (QlQl/e).
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Improving a Parallel Ray Tracing Algorithm on an iPSC/2 by
Emulating a Read-only Shared Memory

Didier Badouel - Thierry Priol
IRISA/INRIA - Rennes

Abstract

The production of realistic image generated by computer requires a huge amount of computation
and a large memory capacity. The use of highly parallel machines allows this process to be
performed faster. Distributed memory parallel computers, like hypercubes or transputer-based
machines, offer an interesting ratio performance/cost assuming that a load balancing and a
partition of the data domain is found. This paper deals with the demonstration that emulating
a shared memory on these computers seems to be the best way to parallelize algorithms Like
ray tracing which use large read-only databases with no obvious distribution. Results are given
which allow to compare with a previous parallel ray tracing algorithm that we have implemented
on an iPSC/2.

1 Introduction

The ray tracing algorithm, based on simple optics' laws, provides the simulation of illumination
effects such as the shading, the reflection, and the refraction. In order to evaluate the color
of each pixel of an image, a geometric model is used to describe the objects in a scene and a
photometric model is used to define the behaviour of objects with respect to light sources. Each
light intensity contribution for a pixel is evaluated with two kinds of computation.

the geometric calculations evaluate the closest intersection between a ray and the objects in
the scene. Their number increases with the photometric complexity of the scene, i.e. with the
number of rays, and with the geometric complexity of the scene, i.e with the number and the
shape of the objects. Several attempts have been proposed to minimize the amount of ray/object
intersection. These solutions are based on what we call an object access structure which allows
a fast search of objects along a ray path. They can be grouped in two approaches:

* creation of a tree of bounding volumes [24, 18],

" subdivision of the scene extents in an adaptative way [2, 12, 17] or a regular way [1, 6, 10,

Ill.

the photometric calculations, once the impact point determined, are used to evaluate the light
intensity contribution of a ray. Their number is proportional to the number of intersection
points. According to the photometric properties of the objects, new rays are shot from the
intersection point in order to take into account the contribution to the pixel intensity of the
neighboring objects [9, 14, 28]. In fact, if the object is transparent (respectively reflective) then
a new ray is shot in the refracted direction (respectively in the reflective direction).
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The purpose cf this paper is not to compare the different models used for the geometric and
the photometric calculations, a detailed discussion can be found in [23] or in [10]. The aim of
the paper is to focus on the problem of the amounts of computation and memory requirement
whatever algorithmical choices which are made. For our parallel ray tracing algorithm, we have
opted for :

" a polyhedral description for the objects.

* a regulax grid as object access structure.

" the Whitted model [28] improved by the Phong model [21) for the photometric evaluation.

Computing realistic images require several millions rays, and several hundreds of thousands
objects. For each ray, the closest intersection point with the scene must be computed. Thus,
it is the great number of ray/object intersections which makes the ray tracing so expensive.
Despite the improvements for ray/scene intersections, the ray tracing algorithm still is too slow
on sequential computer. Moreover, latest researches such as stochastic sampling [8, 19] and
sophisticated light models [7, 16, 25] require more and more computations. New algorithmical
improvements could not decrease substantially the synthesis time. Therefore, since few years,
we are studying the use of Distributed Memory Parallel Computers (DMPC) which are low cost
supercomputers. A DMPC is a MIMD computer where each processor has a local memory used
to store its own code and data. All the protessors of a DMPC are connected through a network.

For our experimentations, we have used an iPSC/2. The iPSC/2 system consist of a cube
connected to a host processor. The cube houses all the nodes connected through a hypercube
network topology. Each node consists of the Intel 80386 microprocessor supplied with a 80387
floating point co-processor and 4 Mbytes of local memory. It is equipped with the Direct Connect
Module (DCM) for high speed routing message between nodes. The performance of a 64 nodes
are approximatively 256 MIPS and 20 MFLOPS. The node support a vector extension board
with peak performance 20 MFLOPS per node. The system available at IRISA is configured in
64 nodes with no vector extension. The host processor contains the software development tools.
It is connected via a special link to node cube 0. It performs compilation, program loading
and I/O operation with the hypercube. The iPSC/2 can be programmed in C or FORTRAN. A
communication library has been added to these languages to allow sending of receiving messages
between nodes.

The standard programming methodology consists in subdividing the problem to be solved
in a set of communicating tasks [15] and map them on processors. Each node contains in its
local memory the code and the data for its processes, and all the processes on the cube and on
the host can communicate via the exchange of messages. The conception of a parallel algorithm
requires special attentions for correctness and efficiency, avoiding deadlocks and ensuring a load
balancing. The computation load balancing for data driven problems (like ray tracing), where
the dynamic behaviour is quite difficult to be modelized, is experimentally measured. The
performances of a parallel algorithm is commonly given in terms of speed-up and efficiency. The

speed-up is the ratio of the running time of a processor to the running time obtained with p
processors. This quantity represents, in fact, the number of processors effectively used during
the parallel execution of the algorithm. As for the efficiency, it is equal to the ratio of the speed.
up to the number of processors. It represents the average utilization of the processors. These
two quantities are enough to measure the computation load balancing of a parallel algorithm
but are not the only performance criteria. In particular, for problems using large databases, the
partition of the data domain must be considered.
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Before describing our parallel implementation of the ray tracing, we first discuss on which
are the computations and the databases required in this algorithm, and what are their amounts.

2 Computations involved in the ray tracing algorithm

The purpose of this section is to present the basic algorithms, for the geometric computations,
considered in our ray tracing. We only present the algorithms necessary to solve ray/scene
intersections as they represent more than 80% of the synthesis time for ray tracing complex
scenes. In our implementation, we use at one and the same time a regular grid and object
extends called slabs defined by Kay and Kajiya [18]. For each ray, the grid provides a list of
polygons which localization is near the ray direction. Then, before computing the intersection

ray/polygon, a test is made using the slabs to avoid this computation when the ray pass outside
the polygon extends. The use of these two filters at the same time is justified by the fact that
the grid which minimize the synthesis time is not the one which provides the smallest number
of polygons.

Ray and polygon representations

" The parametric representation of a ray is

R(t) =0 + DJt(1

where, 0 is the origin of the ray, D the direction of the ray, and t the parameter of the

representation.

" A polygon is described by its vertices Vi (i E {0,.... N - I. iv > 2 j. Let x,, y, and
the coordinates of the vertex V. The normal of the piane containing the polygon, N, is

computed with the cross product :

1' = (VI -VO) x (V2 -VO)

For any point P of the plane we have P.N = cst. This constant value is computed by the

dot product d = -Vo.N. The arithmetic representation of the plane, is calculated once for
all, and stored in the polygon description.

N.P + d = 0 (2)

Ray/polygon intersection

Using a ray tracing method with polygonal databases, we must define a fast algorithm to compute
ray/polygon intersection. A barycentric approach has been described in [27], the following
algorithm is quite similar but faster. The goal of the algorithm is not only to determine if a Ray
goes through the polygon, but must then determine the coordinates of the intersection point
and parameters to localize this point with respect to the polygon's vertices. These parameters
are used to compute the interpolated normal at this point, and can be used also to compute the
entry of a texture map.

The evaluation of the parameter I corresponding to the intersection point between the ray

and the embedding plane of the polygon, can be obtained using the equations (1) and (2)

d- N.0t -(3) N.D
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Figure 1: Parametric representation of the point P.

If polygon and ray are parallel (N.D = 0), or if the intersection is ahead the origin of the ray
(t < 0), or if a closer intersection has been already found (t > mini), the intersection will be
rejected. If not, we must determine if the intersection point is inside the polygon. This is done
using a parametric resolution. This solution is based on triangles. If a polygon has n vertices
(n > 3), it will be view as a set of n - 2 triangles. The only constraint is to use convex polygon.
The point P (cf Fig. 1) is given by:

VoP = a.V'V1 + .Vo.V2  (4)

The point P will be inside the triangle (VV I V2 ) if :

a > 0, > 0 and a + 0 < I

The computation of a, / requires to resolve a system of three equations and with two unknows
which can be reduce in a system of two equations with two unknows when working in one of
the plane perpendicular to the axis. In order to discard the degenerated polygons where the
projection would be a segment, we choose the plane of 'biggest' projection (as in [27]) computing
the value io representing the direction of the projection plane.

0 si IN,= Max(JN, N5), JN, ().
io= I si JNS- = Ma(INI, JN0 , jNI).

2 silNzJ = Max(INI, 1Nyl, INl).

Consider il and i2 (i1 and i2 E {0, 1,2}), the indices different from i0 representing the two
other directions, and (u, v) the two-dimentional coordinates of the vectors VoP, VoV, and I'V 2 ,

o = Pi - Vo,, u, = V, - Vo, u2 = V 2, - Vo,

Vo = P", - Vo,2  1 = v1-2 - v% V2 = 2V,' - v2

Then, the solutions are :

det U0 12det( 1U
1JQ V2 fV 0a = and / 0

oi ?IV 2 / V V 2/

The interpolated normal from the point P is obtained by :

Np = (1 - (a + 13)).No + a.N1 + /3.N 2



Figure 2: Running through a 3D grid.

Using a regular 3D grid

A 3D grid is a discrete representation of the scene space, it subdivises this space in equal
parallelepipedic sub-volumes called voxels. Thus, the discrete run of a ray through the grid is
a set of ordered voxels. Each voxel of the grid contains a list of identifiers for the polygons
passing through its volume. During the synthesis task, the polygons kept for a given ray are
those member of the voxels encountered during the run of the ray. In order to avoid several
intersections of the same polygon with a given ray, an identifier (Rayid) is stored in the polygon
description and represents the last ray compared with this polygon.

The method chosen to run through the grid is the same as the one described in [1] ; Be-
forehand, the first voxel encountered by the ray is computed. This voxel is either the voxel
containing the origin of the ray (0) or the entry voxel when the ray comes from outside the
grid. For each ray, the following values are initialized :

@ the constants 6t., 6ty and bt, represent the increment of t in each direction x, y, z.

e the variables t., t. and t, represent the values of t for the next boundary voxel when
crossing in the direction x, y or z (cf Fig. 2).

The incremental run of the grid is then computed in a easy way ; For each step, the com-
parison between t., ty and t. gives the direction where the next voxel is located. When a step
is made in the i direction, the variable t, is incremented with the constant value bt,.

Using Slabs

The slabs (cf [18]) are convex extents delimited by pairs of parallel planes (see in figure 3 a 2D
example). One slab is characterized by a normal direction N, and two values d'"' and d-".
such as the equation of the planes bordering a polygon in the direction Ni are

N,.P + d" = 0 and Ni.P + d"' = 0 (5)

The values d!'1 and d"' are evaluated with the projection of each vertex V onto the line of
direction N,.

d, = N6.Vj d '" = min(d,,) d'i" = max(d,,)

The values d~i'n and dTnQ are stored in the polygon description. During the synthesis task.
the intersection ray/slab gives a segment of the ray such as t"n 'n < t > t- a . These values are
computed using the ray representation (Equ. 1) and the slabs representation (Equ. 5).

n d"N- Ni.O a - Car - N..O

N,.9D - N,. D
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Figure 3: Description and intersection of the slabs extends.

Choosing different slab directions for each polygon would be possible, however, when the slab di-
rections axe the same for all the polygons, some improvements can be made. The idea (proposed
in [18]), is to pre-compute for each ray, the following values :

Si = Ni 0 and Ti = N

And then, the intersection ray/slab only requires the following computations

tmin = (d"' - S)Ti and tf't = (d - S)Ti

Since fli[ty i n
, tjax] is an empty segment, we can conclude that the calculation of the intersection

between the ray and the object may be avoided.

Partitioning the ray tracing algorithm

The geometrical databases involved in these algorithms are the polygons description, and the
grid description with its associated voxels. The amount of these databases rapidly reaches several
tens millions of bytes (Mbytes). For example, in our results, we present a database which has
required 140 Mbytes of memory. The problem of memory amount becomes more crucial when
using texture databases. Thus, our study of parallelisation did not hold the algorithms based
on processing without dataflow as they do not achieve a data distribution which allow to render
complex scenes.

Since the computation of each pixel is independent from the others, the computation can be
easily distributed among the processors. As there are much more pixels than processors, load
balancing can be achieve by using a server/client programming model. A server process assigns
the computation of a pixel to a client process running on a non-busy processor.

Thus, the problem of parallelisation for such an algorithm is to insure both a good database
and computation partitions. We have got a first experience with a parallel ray tracing (see
[22, 23]) based on processing with ray dataflow. This algorithm took up the Cleary's idea
[51 and subdivises the ray tracing problem into sub-regions distributed among the differents
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Figure 4: Several uses of the memory cache mechanism.

processor elements (PEs). The rays are exchanged between processors when they left one region
for the next one. This experience had given several interesting solutions to insure a static load
balancing, but the efficiency of this algorithm decreases when the number of processors increases.
The main reason of this behaviour is due to messages with an increasing number when using
more PEs, and with not a uniform distribution among the PEs.

In conclusion, to find a good computation load balancing for the ray tracing algorithm, while
respecting the constraints such as the size of each local memory and the communication rate
between PEs, is very complex when using a message passing model of programming. Thus, we
have opted from now on a shared memory model of programming to solve our problem.

3 Emulating a read-only shared memory for ray tracing

Why such a model for distributed memory parallel computers ?

Resulting from the difficulty of the message passing model of programming, severals studies have
been done to define mechanisms that implements a shared data model in distributed systems
[3, 4, 20]. The goals of this works is to provide a better abstraction of data mapping over a
set of distributed memories. In order to offer a general tool, while not degrading performances,
in [20] and [3] strategies are studied to maintain data consistency between copies of modified
variables . Our study is in the reverse order, trying to optimize a specific parallel application
(ray tracing), we came up with emulating a shared memory. The data management following
this abstraction is quite attractive but our first objective is always the efficiency of data accesses.
The aim of our study is to show that an emulation of a shared memory on a DMPC is the best
way to parallelize algorithms such as ray tracing which use large read-only databases with no
obvious domain decomposition. With a DMPC, a portion of each node's memory can be used
to store a part of the shared database and the remaining portion as a cache to speed up low
global accesses. The notion of cache, managed by software in our case, is the core of an efficient
shared memory emulation.

Caches were introduced to palliate the gap between fast processor cycle times and slow large
memory access times. Generally speaking, a memory cache is any hardware or software device
storing in a relatively small but fast access area a selected part of a database stored in a larger
but slower access memory. A general presentation of cache memories can be found in [26]. For
example, in the concept of virtual paging memory, the primary memory can be viewed as a
cache for the secondary memory. The use of a cache device improves the bandwidth between
the processor and its memory, in our case it increases the bandwidth between a node and a
virtual global memory. Several devices use the concept of memory cache as chown in the figure
4.
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Figure 5: A user node memory description.

Why such a model may be efficient for ray tracing ?

Various characteristics of the ray tracing algorithm led us to design a software tool to emulate
a global memory access in the context of distributed memories. These characteristics are as

follows:

" the huge amount of memory necessary for this algorithm makes the database load balancing

as important as the computation load balancing. Increasing size problems are a challenge
for DMPC;

* due to the coherence property and topological property of 3D objects, only a small part of
the whole database is required at a given time. Thus a caching mechanism can be efficient
for our problem ;

" due to illumination effects (shading, reflection, refraction), the small part of database

necessary to evaluate one pixel is nearly impossible to be statically determined. Thus the
database memory management must be dynamic ;

" the calculation of an image uses the database in a read-only way, there is no problem of
data coherency management.

How we distribute the shared memory ?

In the ray tracing algorithm, the shared memory is constituted by the database and the bitmap
(pixel map). The sharing of pixels will be discussed in the next section. The database contains
the photometric and geometric parameters of the objects constituting the scene, and last but
not least, the objects access structure. The mechanism used to manage the global memory is
called Object Paging. This designation includes two aspects, first the virtual memory emulation
is done only for data memory, and second the indivisible item of storage is an object.

We have seen that in our implementation, objects are polygons and their access structure is

a regular grid. Later on, we will call object an item of a page of the global database which can
be transferred between local memories (a polygon, a voxel of the grid ... etc). An object belongs
to one and only one page. One constraint is that the size of any object must be lower than the
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Figure 6: Accessing a global object.

size of a page, and if the size of a page is not a multiple of the size of an object, the difference
represents lost memory cells. However, the main advantage is that the memory location of one
object is contiguous.

In our algorithm, the whole database is first equally distributed over the set of nodes without
any particular mapping. Therefore each PE's memory almost contains the same number of pages.
A local memory of a PE is organized as shown in figure 5. Each local memory is divided in
three parts: one containing the code to execute the application, an other to store a portion of
the database, and the free space is used as a cache memory to optimize global accesses to the
distributed global memory. The two last parts (database memory) are divided into pages to
allow a memory management.

How we access an object of the shared memory ?

During the synthesis task, the application (ray tracing) can potentially access the whole database
through a software memory management. For each node, when a cache default is detected, i.e.
the page is neither in its local database nor in the cache memory, then a request is sent to the
node responsible for this page. In this case, when a node receive the page, it stores it in the
cache memory according to a LRU (Last Recently Used) policy. This search is done during the
communication of the new page, and thus does not cause extra cost (cf. Fig 6).

In our implementation, an object is characterized by two numbers : the first one (idl) is
the identifier of the class where the object belongs, and the second one (id 2) is the member
identifier inside this class. The numbers (idiid2) represent one unique location in the global
memory. A class is a set of objects having the same type. All the objects of one class are stored
in contiguous pages to make the global memory management easier. The informations relative
to one class are :

" firstp ,(id), the first page where the objects of class id are located.

" sizebject(id), the size of an object of class id.
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* nbobjectperpage(id), the number of objects of class id in one page.

Thus, in order to access a global object, we must determine

" in what page the object is located ?

numpaoge firstpage(idl) + id 2 / nbobject-pe,.-page

" on what node is located this page ?

nurnode = numpae % nbnode

* where is this page wrt this node ?

depn~od = numpage / nbnode

* where is the object wrt this page ?

deppp.. = id 2 % nbobec-_prc-page

When we have determined the address of the page(Opage), after getting this page from all
other node if necessary, we can evaluate the address of the object as follows

@object = (page + depp~g, x sizeobjeci(idi)

For better performances, we have chosen the values as power of two. Thus, all the operations
necessary to calculate the global address of an object only require logical operations.

Work distribution and bitmap distribution

Once a shared database has been emulated, the work distribution ensuring a load balancing is
quite simple. Each PE is owner of a part of the bitmap. For example, if we use 32 PEs to
compute an image with a 512X512 resolution, each PE manages a 32X32 sub-bitmap. We use
square (or nearly square) sub-bitmap in order to exploit as much as possible the ray coherence
property. If the PEs could directly address the frame buffer, a centralized control would not
be necessary. As we do not have this facility on the iPSC/2, a copy of the bitmap is managed
by the host computer of the hypercube in order to access the frame buffer. The synthesis of
each sub-bitmap requires global data accesses at the beginning of the task, and progressively
the number of external requests decreases as the memory cache keeps the pertinent items of the
global database.

When a PE completes the computation of its sub-bitmap, he sends a request to get an item
of work (i.e a set of pixels) from a PE still working on its own sub-bitmap. This request moves
along a ring topology. If this request goes back without satisfaction, the PE knows that the
image is achieved. This local termination detection is sufficient for our application.

In order to insure a good work balancing, the only parameter to be determined is the size
of this item of work. If its size is minimal (i.e. item of work = one pixel), then we have the
best work balancing we can obtained, assuming that the computstion of one pixel is indivisible
over the set of nodes, but the cost in communication is then higher. Therefore, to take benefit
of a good work balancing, we must not generate more work in communication than work in
computation. experimental results (see Fig. 7) show that a size of about 3 x 3 pixels offers a
good compromise.
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Results

Tests of our parallel ray tracing has been performed on a set of scenes call Standard Procedural
Databases (SPD) provide by Eric Haines (see [13]) and other scenes (including the famous Teapot
from the university of Utah) described with the Neutral File Format (NFF) of Eric Haines.
Several synthesis times are given by the table in figure 10.

First results of our algorithm on the iPSC/2 are promising. If we compare the results
obtained by this method (cf. Fig. 8 and 9) with our previous work [22, 23], we can emphasize
on the improvements brought by the shared database model of programming. The behaviour of
this algorithm is what a user of parallel machines expecting. Indeed, the use of more PEs allows
to solve problems faster, and to consider larger problems. This is due to the characteristics of
the the software global memory management ;

" for a sufficient size of memory cache, the PEs can work rapidly since the number of requests
to others is small ;

" the size of the memory cache is flexible. Indeed, with a memory fixed-sized problem, i.e.
a fixed-size database, using more PEs increases the computation power of course, but also
provides a better memory management as local cache memory increases (see Fig. 5).

One of our goals is to render a database the largest as possible. At present, we have rendered
the tetralO database which contains more than one million (1 048 576) polygons. The size of this
scene with its object access structure requires the use of 109452 pages (x 1280 Bytes), which
represents a shared memory of about 140 MBytes. The synthesis time with 64 nodes is 8 in
46 sec. We can noticed that this database can not be rendered with 32 nodes (with 4 MBytes
-if memory per node).

4 Conclusion

The aim of our study to parallelize the ray tracing method is to bring out a model of parallel
programming well suited for this kind of algorithm. Due to the difficulty to appreciate the
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Figure 8: Speedup for the Rings images.

#Proc.: 1 2 4 8 1 32 64
Rings2 1.00 0.95 0.93 0.91 0.9110.90 0.89
Rings3 1.00 0.95 0.92 0.91 0.90 0.89 0.88
Rings4 1.00 0.95 0.93 0.92 0.91 0.90 08

Figure 9: Efficiency for the Rings images.

Database # Polygons Syn-thesis Time
Teapot 3754 1 mn 59 sec
Coupe 15408 5 mn 44 sec
Rings4 18002 8 mn 48 sec
Tet ra9 262144 2 mn 21 sec

LTettalO 1048576 8 mn 46 sec

Figure 10: Examiples of synthesis times with 64 nodes.



performance of the various parallel ray tracing algorithms, we have done and keep on doing
experiences on an iPSC/2 hypercube. Comparing the behaviour of our first algorithm (see
[22, 23]) using a message passing model of programming with the behaviour of the last one,
described in this paper, which uses a shared database model of programming, we advocate the
shared model approach when using large read-only database with no obvious distribution.
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Abstract.

We present the two most classical domain decomposition methods with non overlapping subdomains a
conforming one, the Schur complement method, and a non conforming one, based on introducing a Lagrange
multiplier in order to enforce the continuity requirement at the interface of the subdomains.
We show that these methods represent two dual formulations of a condensed problem on the interface.
The problem of the parallel implementation of these methods is adressed, and the results of some numerical
experiments for ill conditioned three dimensional structural analysis problems are given.

1. Introduction.

The simplest parallel algorithm for solving elliptic partial differential equations is based on solving the
complete problem through the conjugate gradient method with parallelisation of the matrix-vector product. This
can be done by performing in parallel the computation for the lines or the rows of the matrix associated with
different substructures. But, with sparse matrices arrising from finite element methods, the amount of computation
of a matrix-vector product depends in a linear way of the number of variables. As the data transfers depend in a
linear way of the number of variables too, the parallelisation of these products typically leads to fine grain paral-
lelism.

Moreover, for large structural analysis problems, using a global conjugate gradient method is really problematic,
because of the ill conditioning and the large numbers of degrees of freedom.

It is possible to decrease the dimension of the problem and to get parallel algorithms with large granularity
by using domain decomposition methods.
Some of these methods involve overlapping subregions and are derived from the Schwarz alternative principle,
see [1] and [2]. It has been proved in [3] that the Schwarz alternative procedure consists in solving the condensed
problem associated with the Schur complement operator by the mean of a block Gauss-Seidel algorithm.
Other methods involve non-overlapping subregions. These methods consist in solving a condensed problem on
the interface between the sudomains. The condensed operator is defined with the help of the inverses of local
matrices associated with independant local problems.

These methods appear to be better suited to finite element or finite difference methods, first, because they lead to
solve the condensed problem on the interface through the preconditioned conjugate gradient method, and
secondly, because it is generally more difficult to split an unstructured mesh in overlapping than in non-
overlapping subregions. And, at last, the Schwarz alternative method is less intrinsically parallel.

In this paper, we present, first, the most standard domain decomposition method with non-overlapping sub-
regions : the Schur complement method.
Secondly, we present a non conforming method, based on introducing a Lagrange multiplier to enforce the con-
tinuity requirement at the interface between the sub-domains, that we call the hybrid method, because it is similar
to the well known hybrid finite element method for the elasticity equations

We show that the two methods are associated with dual formulations of the condensed problem on the interface.
Then, we adress some practical problems for implementing these methods, concerning the topology of the inter-
face, and the choice of the local solver.



At last, we give some results with the implementation of the hybrid method for solving an ill conditioned three
dimensional structural analysis problem

In the sequel of this paper we shall use the vocabulary of the linear elasticity. But the methods presented
here can, of course, apply to any second order elliptic partial differential equations.

2. The Schur complement method.

The most classical domain decomposition method with non-overlapping subdomains, the so-called Schur comple-

ment method, is based on the Gaussian elimination of degrees of freedom inside the substructures. Consider the
linear elasticity equations on a domain Q, and K the matrix associated with a Lagrangian finite element approxi-

mation of the displacement fields. Split the domain Q1 into two open subsets ill and C12 with F3 the inner inter-
section of the boundaries rl and 172 of Q I and fl 2 .

Figure 1 : non-overlapping domain decomposition

The stiffness matrix associated with the renumbering of the degres of freedom according to the splitting of the
domain into these three subsets can be written in the block form below

K11  0 K131

K 10 K22 K23

K13  K K33

The stiffness matrices associated with the linear elasticity equations on Ul and 2 with Neumann boundary con-

dition on r 3 are: E , K K 3  ]K22 K23 1
1 K 13  KJ1)  and () = K 2 K1 3

The coefficients of the matrices K3 ) and K?3) are the contributions from the integrals over Q, and fl 2 of the
basis functions associated to the nodes of r,, and so K33 - Kj3) + KP) .

To solve the global problem,

Kx--b ith x= x2~ and b= b,

.3 b3

one can perform a Gaussian elimination of the degrees of freedom inside the open subsets [, and 112 and get the

following condensed problem, involving only the degrees of freedom on 1-3 :
K3 - K13 Ki? K1 - K,, K- K, ]x3 b3 - Kt, Ki-' b,- KI K ") b2

The associated matrix, the Schur complement matrix S, is symmetric and positive definite (see [4]). This is

proved by the following equality that consists in a change of basis for the dot product associated with the K

matrix

0 0 ifK,1  0 K2,3 If 1 0 -KI-IK]3 1 [(I 0 01
0 0 0 K, K3 0 1 -Kj-'aK 23 = K 2 0

-K31i' -K32K2-' I [K31 K32 K33 0 0 1I 0 S
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So, the problem (1) can be solved through the conjugate gradient method without actually computing the
coefficients of the matrix S.

Let x3 be a given displacements vector on 1"3.The product Sx3 is given by
S x3 = S() x3 + S(2) 

x3

with S )= Kfi ) - K 3 K
I-11 K13 and S(2)= -K

2 ) 
K

3 
K
22 K23

Computing the product S(1) x3 involves two steps.
First step, the solution of the Dirichlet problem on 01 with the boundary conditions given by x3 on 1 3 :

K 11 x, = - K13 X3

Second step, the computation of the product of the K(l) matrix by the vector (x1 ,x3)' that is easily shown to be
equal to ( 0 , SOt)u3 )' .

So, solving the equation (1) through the conjugate gradient method gives a parallel algorithm with a very
good granularity because the main part of the work consists in the computation of local independant contributions
to the product by the Schur complement matrix, that involves mainly the solution of independant local problems.

3. A preconditioner for the Schur complement method.

In the previous section, we have seen that the product by the local Schur complement matrix can be com-
puted by solving a problem with Dirichlet boundary conditions on the interface and then computing the trace of
the corresponding internal forces.

That leads to the following equation

( 3 K ,3,1 K1K3 0 12)
[ x = [ K3) K13 0 X3  (2)

The Schur complement matrix is the discrete operator associated with the mapping of the trace of displacements
field on the interface onto the trace of the internal forces. This mapping is a so called Steklov-Poincard's operator
(see [5]) .

So, the inverse of the local Schur complement matrix can be computed by mapping the trace of the internal
forces field onto the trace of displacements field on the interface. That leads to solve a local problem with Neu-
mann boundary conditions.

Let us note

equation (2) shows that x3 is the restriction on 173 of the solution of the Neumann problem (7)

K11 K13  x ] = 0 1
KiK13 ' 4) X3 1)i l0 3

An efficient preconditioner for the condensed problem associated with the Schur complement matrix can be
build with the following shape :

M = D, [S()]-i Df + D2 [S2)1 -1 D2'

where the D, matrices are weighting matrices such that D, + D2 = IIr, (see, for instance, [6] and [7].

As the Schur complement matrix is a mapping of the trace of displacements field on the interface onto the trace
of the internal forces, the residual of the conjugate gradient algorithm is homogeneous to a forces field, whenever
the problem is related to the displacements field. The preconditioner presented here consists in mapping the gra-
dient vector back in the primal space associated to the displacements.

Computing this preconditioner leads to the same degree of parallelism as the plain algorithm, because it
consists mainly in solving independant local Neumann problems, and then assembling the local contributions on
the interface.

451



4. The hybrid finite element method.

Another domain decomposition method is based on a mechanical approach and involves the introduction of
a Lagrange multiplier on the interfaces to remove the continuity constraint.

The equations of the linear elasticity equations with homogeneous boundary conditions are:

Au = f in a( = (aij Fh (u))

u = 0 onr 0  with (Au), = - _ x_ (3)

The usual variational form of this problem consists in finding u in (H'(Q)) 3 satisfying the boundary condition
u = 0 on 1 0 wich minimizes the energy functional :~1

lM = -a(v,v) - f,v) with a(uv) = Sjaijk(u)Ejj(v) dx

Let us consider the same splitting of the domain as in the previous section. For a sake of simplicity, let us
assume that the boundary of the interface 173 is embedded in ro the part of the boundary of Q with homogeneous
Dirichlet conditions. Then, the traces on r 3 of the displacements fields u satisfying the boundary condition u = 0
on 17o belong to the space (Hj?0r3) .

Solving the linear elasticity equation consists in finding two functions ul and u2, in the functional spaces VI and
V2 of the fields belonging to (HI(0 1))

3 and (H'(f92)) that satisfy the boundary conditions on r1 and 1 2, which
minimize the sum of the energies : I(v) = 11(vi) + 12(v2) , with the continuity constraint : VI = v2 on r3 •

The dual form of the continuity condition is :

( v I - V2 , pa )r, = 0 for each Ig in [(H0o2(r 3))3].

The primal hybrid variational principle is based on removing the intersubdomain continuity constraint by
introducing a Lagrange multiplier (see for instance [8] or [9]). Under the assumption that the so-called
Ladyzenskaia-Babuska-Brezzi condition is satisfied :

Sup( V- V2 ,) 2 C 1xl ,~I( VI , v2 ) I.v1 =1

one can show (see [10]) that the problem of minimization with constraint above is equivalent to finding the

saddle-point of the Lagrangian :

L(v,IX) = II(v1) + I2(v2) + ( vI - v2, I )r- (4)

This means finding the fields (ur,u2) in VlxV2 and the Lagrange multiplier X in [(Hjon(P,)) 3]' which verify:
L(u,IX) 5 L(u,X.):< L(v,.) ,

for each field v = (vl,v2) in VlxV2, and each pa in [(Hj0(r 3))31'.
Clearly, the left inequality imposes ( u - u2 , IL )r, : ( ut - u2, X )r 3 and so ( ul - u2 , pa )r3 = 0 for each pa in

[(H0rz(r 3))31', thus the continuity constraint is satisfied by the solution of the saddle-point problem.

The right inequality implies : 11(ul) + 12(u2) s 11(vi) + I2(v2) for each (vj,v2) in (Ht((j))3, that means that ul and
u2 minimize the sum of the energies on Ql and 12 among the fields satisfying the continuity requirement, and so
ut and U2 are the restrictions to 12, and L12 of the solution of the primal problem (3).

The classical variational interpretation of the saddle-point problem (4) leads to the equations
Alul + BI*. = f, in 1

Ul = 0 on For F

A2 u2 - B2. = f2  in 2  (5)

u2 = 0 on Fo( r2
Biu - B2u2 = 0 on r3

A, and A2 are the differential operators of the linear elasticity equations on 01 and L2 with Neumann boundary
conditions on r3, and BI and B2 the tace operators over r3 of functions belonging to VI and V2.

The analysis of these equations shows that the Lagrange multiplier X is in fact equal to the interaction
forces between the substructures along their common boundary. Clearly, to get independant local displacement
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problems, it is necessary to introduce the forces on the interfaces. On a structural analysis point of view it is
hardly a surprise. Nevertheless, the precise functional analysis above is usefull because it allows classical results
about finite element approximations for hybrid or mixed differential equations to be used.

5. Discretization of the hybrid formulation.

A discretisation with finite elements of the hybrid formulation (5) leads to the following set of linear equa-
tions in which the notations of variables associated to discrete problems are the same than the ones formerly used
for the continuous formulation.

I K0)ut + B. f

K(2)u2 - B2;L f2 (6)
Blu , - B2u 2 = 0

By elimination of the displacements in the equation (6), the problem can be written with respect with X. only

[ B, K(t' -' B + B2 K
(2)- ' B2 X - B, K('r' fl- B2 K(2)-' f2

So X satisfies the following equation :

D X =b (7)K o)- Kar 0, , :- '
with D BI r B ]..d"' [ b B= B2 I t

IB [2  L Or1 B2j aI B -2 [ 0r Ko2) [f2
Obviously, the D matrix is symmetric positive. It is definite if the interpolation spaces chosen for ul and u2 and
X satisfy the discrete Ladyzenskaia-Babuska-Brezzi condition.

To be able to use the standard approximation results for the mixed or hybrid formulations, it is necessary to find
such finite elements spaces that the discrete Ladyzenskaia-Babuska-Brezzi condition is uniformly satisfied accord-
ing to h, the mesh size parameter.

But, generally, checking the uniform Ladyzenskaia-Babuska-Brezzi condition for the discrete problem may be

tough (see [11] and [12]). The finite elements used for the Lagrange multiplier must be associated with polyno-
mials of one degree less than the ones used for the primal unknowns, as the Lagrange multiplier is homogeneous
to some partial derivatives of the solution of the primal problem. When using the hybrid formulation as
described above to get a domain decomposition method, the Lagrange multiplier is introduced just to enforce the
continuity condition. The values of the discrete multiplier do not need to be a good approximation of the continu-
ous interaction forces between the substructures.

So, satisfying the uniform Ladyzenskaia-Babuska-Brezzi condition is not necessary in this case. The discrete
form of the continuity constraint : v = v2 on r3, can be written simply : V1 = v2 for each degree of freedom
located on 1 3 .

With such a condition, the discrete Bi matrices are just boolean restriction matrices.

Taking this approximation is equivalent to have finite elements associated with the same polynomials for the

Lagrange multiplier X and for the dispacements fields, and to take a collocation approximation for the integral:Jr,( v,- v2) I dy.

The uniform Ladyzenskaia-Babuska-Brezzi condition for the discrete problem is not satisfied. But the displace-

ments fields ul and U2, solution of the discrete hybrid problem, are conforming, due to the condition : u1 = u2 for
each degree of freedom located on r. So these fields are, in fact, the restriction over the two subdomains of the
solution of the discrete primal global problem, for which the standard approximation results apply.

As a consequence of this form of discretization, one can see that the method can be applied even though the
boundary of the interface r 3 is not embedded in r0 the part of the boundary of [ with homogeneous Dirichlet
conditions.

6. Solution of the discrete hybrid problem

The problem (7) can be solved through the conjugate gradient method for it is possible to compute the pro-
duct of the D matrix by a vector, although the matrix itself is never computed.

Let p be a vector, computing the product v = D ii involves the following three steps.
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Step one:

computation of the matrix-vector, [;]=[2 ][
that is just a reordering operation because the Bi matrices are boolean.

Step two:

wl = [K r [vl
computation of the product, = [K2)]- V2

that means computing the solution of two independant local sets of linear equations associated with the local
linear elasticity pioblems with Neumann boundary conditions on the interface 171

Step three : computation of the variation on the interface of the displacements fields w, and w2

v= [B,-B, w2  I=B, wl - B 2W 2

Obviously, the main step is the second one and can be performed in parallel, whereas only the step three involves
interprocessor data transfers. So, this method leads to a parallel algorithm with the same kind of granularity as
the Schur complement method.

The B i matrices obtained with the discrete hybrid method presented in the previous section are boolean
matrices. So, the contribution DO) of the subdomain number 1 to the dual interface matrix is equal to:

D -= B1 [Kt -1 Bt = [0 1 K, 3  KJ

Let us note

[ K,1 K,3 ]- [01

Then D(1) is equal to the matrix Ci) .
From the previous relation, one can see that the C1 and Cil) matrices satisfy the following equations

K,1 C1 + K13 C41) = 0

K31 C1 + K13) C11) = I

Hence, by elimination of the C, matrix in the previous equations, we can derive the folowing equality:

- K31 Kil K13 C4"') + K 1 c41) = (KJ) - K31 Kil K13 I C4) = I

So, the D( ') matrix is, in fact, the inverse of the Schur complement matrix S(O)
On a functional analysis viewpoint, the hybrid method is the dual method of the Schur complement

method, because the condensed problem with the hybrid method is related to the forces on the interface, when
the Schur complement operator is related to the displacements field on the interface.

On the linear algebra viewpoint, with the discretization presented here, the duality of the two methods is simply
represented by the following relation between the two interface operators:

DO) = ISO]-I

7. Topology of the interface for conforming and non conforming domain decomposition methods.

There are some features of the interface topology which could make the domain decomposition method
with Lagrange multiplier more suitable for a parallel implementation than the conforming Schur complement
method.

When a point belongs to several subdomains, the coefficients of the condensed matrix for the degrees of freedom
associated with this point will be the sum of the contributions of the various subdomains to which the point
belongs. As regards data dependency within the context of the implementation of the method on multi-processor
systems, each processor performing the computation associated with one subdomain, it means that the result of
the product by the Schur complement matrix for such nodes will depend on more than two local contributions,
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In a distributed memory context it means that subdomains are neighboring from the moment that they have just
one common node. In the case of a chessboard decomposition of a two dimension domain, each subdomain has
eight neighbours. For real three-dimensional topology, the number of neighbours can be very large. For a decom-
position in cubes, for instance, there would be as many neighbours as the sum of the numbers of faces, edges and
vertices of a cube that is 26.

In a shared memory context, there is no problem with data transfers, but the assembly of the result of the product
by the Schur complement matrix is still complex, due to the fact that the number of local contributions depends
on the location of the point.

Let us now consider the domain decomposition method with Lagrange multiplier. The only sequential part
of the computation of the product of the dual matrix D by a vector lies in the third step consisting in the compu-
tation on each interface of the variation of the displacements fields :

B, - B2 [ w 1  -B 2 W 2

The B, and B2 matrices are the discrete operators associated with the weak formulation of the continuity of the
displacement fields on the interface :

(VI - V2 , t )r = 0 for each .1 in [(Ho'( 3 ))3]'.

If the interface r 3 between two subdomains has a zero integral, this equation vanishes. In fact B1 and B2
are discrete trace operators, and the continuous trace operators are defined only on subsets of the boundary with
non zero integrals. This is still true even though taking the same degrees of freedom for the Lagrange multiplier
than for the restrictions over the interface of the displacements fields, as it was presented in the previous section.

Figure 2 neighboring domains with the Schur complement method and the hybrid method.
For each degree of freedom located on a point belonging to more than two subdomains, there are then as many
degrees of freedom for the Lagrange multiplier as pairs of subdomains whose interface has a non zero integral.

Figure 3 . degrees od freedom of the Lagrange multiplier for intersecting edges.

In the case of a chessboard decomposition of a two-dimensional domain, each subdomain has only four neigh-
bours, one for each edge. Each degree of freedom for the displacements fields located at a vertex is associated
with four degrees of freedom for the Lagrange multiplier, one for each edge intersecting at the vertex. For a
decomposition in cubes of a three-dimensional domain, there are as many neighbours as faces, i.e. only six.
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For implementation on a parallel system with local memory, it means that the number of processors con-
nected to each node of the system needs to be equal to four for a two-dimensional splitting, with the same topol-
ogy as for a finite difference grid, and equal to six for three-dimensional decomposition, still with the topology of
a three-dimensional regular grid. In both cases the number of neighbors is obviously minimum.
In both shared memory or distributed memory contexts, the assembly of the product of a vector by the dual inter-
face matrix D is simpler because all the points have the same status, and there are exactly two local contributions
to the computation of the product for all the interface nodes.

8. Presentation of a structural analysis problem for a composite beam.

The test problem we consider consists in solving the linear elasticity equations for a composite beam made
of a little more than one hundred stiff carbon fibers bound by an uncompressible elastomer matrix

e2

-, 0000000
o~~0 0000 -0 0 (c)o0 0
0~%oo 00

0 0
Figure 4 geometry of the composite beam.

Homogeneization methods do not work for such a device with macroscopic-scale discontinuity and very different
materials. For instance the Young modulus in the direction of the axis of the beam is 53000 MPa for the fibers
and 7.8 MPa for the elastomer. But, due to the composite feature, the finite element mesh for solving the problem
with discontinuous coefficients must be very refined, for it must discern the material discontinuity. That leads to a
very large matrix, so the problem can be solved only through iterative methods like the conjugate gradient
method.

Figure 5 : a composite "pencil" .
However, substructuring is very easy in the present case for the beam is made of similar jointed composite "pen-
cils" consisting in one of the fibers with its elastomer matrix.

Furthermore, it must be noticed that the problem we tackle is very ill conditioned.
First, for geometrical reason when trying to solve the pure bending problem, i.e. the case of a fixed bottom of the
beam and transverse stresses on the top. The condition number of the matrix of the problem increases with the
ratio of the length of the beam upon the width. This is exactly the case we are the most interested in solving.
Secondly, for material masons, because of the composite feature, and because of the uncompressibility of the
elastomer. To enforce this constraint, we introduce a penalty parameter and the condition number increases when
this parameter tends to 0.

So, this problem gives a very good example of a stiff mechanical engineering problem with natural sub-
structuring. For both the ill conditioning and the high dimension, only supercomputers allow to tackle it. For the
same reason and because substructuring is straightforward, it is a very interesting problem for testing domain
decomposition methods on parallel supercomputers.
Moreover, it is simple to build smaller test problems with the same features in solving the elasticity equations in

domains made of only a few pencils, with the same global ratio of the length upon the width than for the com-
plete beam.
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9. Choice of the local solver

The first tests of the hybrid finite element method have been performed with solution of the independant
local subproblems through the conjugate gradient algorithm.

According to expectations, the hybrid method gave good results under the parallelism point of view. But
comparison with the conforming global conjugate gradient method with a parallel matrix-vector product, yielded
to the conclusion that the non-conforming hybrid method was generally much more expensive, although the con-
forming conjugate gradient is less efficient for parallel processing.
The reason is clear : the ratio of the length upon the width is higher for one pencil than for a beam made of
several pencils. Thus, substructuring leads to local problems with condition number greater than the one of the
conforming primal problem. Then the choice of the conjugate gradient method for solving the local equations
yields to a more expensive algorithm.

Clearly, the solution consists in using a direct method for solving the local problems. It is possible because
the number of degrees of freedom in the substructures can be much smaller than the one of the complete domain.
Furthermore, as each local set of equations needs to be solved several times, the time for the LU decomposition
is not predominant as it is generally the case for direct solution methods.

This problem with the condition number of the local matrices seems to be linked with special features of
the particular problem we try to solve. But the crucial point with domain decomposition methods is the conver-
gence speed of the outer iterative process, because each iteration requires the solution of all local problems and,
thus, is very expensive.
Thus, it is better to locate the interfaces in regions where the solutions are smooth. And as a consequence the ill
conditioning due to geometry may well be worse in the subdomains .
Moereover, iterative methods are sometimes faster than direct methods because of the cost of the LU factoriza-
tion of the matrices. But when there are many right hand sides, and it is the case with domain decomposition
methods because of the outer iterative procedure, direct methods are generally more effective.

Furthermore, the domain splitting may be performed in such a way that the substructures have a slender shape, in
order to get small bandwidths for the local matrices. So, the cost of the computation of the Choleski factorization
of all the local matrices is much lower, in both CPU time and memory requirements, than for the matrix of the
complete problem.

At last, it is clear that the use of iterative methods for solving the local problems prevents optimal load
balancing because the number of operations cannot be forecasted .

The hybrid method with solution of the local problems through the Choleski method has been implemented
on CRAY-2 and CRAY-YMP832 machines for the three dimensional problem presented in the previous section
of the paper .
-Tests have been performed with subdomains consisting in one or a few pencils and numbers of subdomains
between four and sixteen.
With highly optimized backward and forward substitutions for the local problems, (see [13]), speed-ups have
been more than 3 on CRAY2 and more than 7 on CRAY-YMP. These performances are nearly the best possible,
due to the problems with memory contention on these machines. The global computation speeds have been 700
Mega-flops on CRAY2 and a little bit less than 2 Giga-ftops on CRAY-YMP.

These results prove the ability of algorithms based on domain decomposition methods with solution of the local
problems through direct solvers to yield maximum performances with vector and parallel supercomputers.

10. Some comparisons of the performances of the hybrid domain decomposition method and the global
Choleski factorization.

The table above presents some results obtained with a direct global solver, the Choleski factorization, and
the hybrid domain decomposition method, for three different test problems.

In all the cases, we computed the results of the pure bending problem for three dimensional beams, consisting in
four, nine, or sixteen composite pencils.
We indicate the number of subdomains, each subdomain made of one pencil, the global number of degrees of
freedoms, the number of degrees of freedom on the interface, and the CPU times and memory requirements.

The Poisson ration for the elastomere is 0.49.
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The CPU times include the time for the Choleski factorization of all the local matrices for the hybrid domain
decomposition method.
The stopping criterion for the outer conjugate gradient algorithm is:

I u. - u I/I u 1 ! 10-s, and I Ku. - b I/I b I 5 10-4 ,

where u is the result obtained with the global Choleski factorization, and K the global stiffness matrix

number of subdomains 4 9 16
global number of d.o.f 13000 28000 48000

hybrid domain decomposition method

number of interface d.of. 2450 7350 14700
number of iterations 130 210 300
cpu time(s) 20 73 193
memory size(mw) 1.6 4.5 9.5

global Choleski factorization

cpu time(s) 15 130 650
memory size(mw) 3.6 16 50

These tests show that the domain decomposition method may be, with a well suited splitting of the domain,
more efficient than the direct solution, on both memory requirements and CPU time viewpoints, even for very ill
conditioned three-dimensional problems.

Furthermore, the domain decomposition method is much better suited for parallel processing, and it can be
efficiently implemented on distributed memory machines, because the main part of the data lies in the LU
decomposition of the matrices of the local problem that can be located in local memories. The data transfers
involve only the traces of the fields on the interface, and, so, are several orders of magnitude smaller than the
number of operations to be performed in parallel for solving the local sub-problems (see [14] for a parallel imple-
mentation on an Intel hypercube machine of a preconditioner based on the Schur complement method).

11. Conclusions.

The Schur complement or the hybrid domain decompositions methods appear, in practice, to have mixed
characteristics of direct and iterative solution methods.

They are iterative methods, because they consist in solving an interface problem through the preconditioned con-
jugate gradient method. Like other iterative methods, they entail lower memory filling than direct methods,
because only the LU factorization of small local matrices are to be stored.

But with domain decomposition methods, the dimension of the problem to be solved through an iterative method
is much smaller than the dimension of the complete problem. And the matrix of the condensed problem on the
interface is much denser than the usually sparse matrix of the complete problem. And its condition number is
lower, because the elimination of the variables associated with the internal nodes represents some kind of block
Jacobi preconditioner.

These characteristics make these domain decomposition methods, when using direct local solvers, much
more robust than standard iterative methods. They represent a good way to use direct solvers for problems with
such large numbers of degrees of freedom that the solution of the complete problems through a LU factorization
would not be affordable.

The tests presented in the previous section show that domain decomposition methods can, with a well
suited splitting of the domain, be less expensive than direct solvers in both CPU time and memory requirements,
even fore very ill conditioned three dimensional structural analysis problems.

Furthermore, these methods lead to a very high degree of parallelism, and they are very well suited for being
implemented on parallel systems with local memories, like distributed memory or hierarchical memory machines.

An open question that needs to be solved to make such algorithms general purpose solvers lies in the prob-
lem of mesh splitting and interface localization.

Finding an optimal subsructuring requires to take into consideration different problems.

The subdomains must have such a shape that the local matrices have a low bandwidth in order to make the use
of direct local solver efficient. That may lead to large interfaces. But, the less points there are on the interface,
the smaller the dimension of the dual problem is, that should be better to ensure fast convergence of the ou,-r
conjugate gradient.
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Furthermore, the condition numbers of the local problems and of the dual problem depend upon the aspect ratio
of the substructure and of the interface.
To get round the local ill conditioning, the use of direct local solvers and a reorthogonalization process for the
outer conjugate gradient (see [15]) seem to be effective.
But the repercussions for the condition number of the dual interface operator of the geometry of the decomposi-
tion are difficult to anticipate, because they depend not only on the aspect ratio of the interface but also on the
mechanical features of the global problem
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DATA MANAGEMENT FOR 3-D ADI ALGORITHM
ON HYPERCUBE

APPLICATION TO THE DESIGN
OF A PARALLEL NAVIER-STOKES SOLVER

P. LECA and L MANE
ONERA, Parallel Computing Subdivision
B.P. 78, 9-022 Chatillon Cedez, France

ABSTRACT
The success of highly parallel distributed memory multiprocessors will depend
mainly on their efficiency when running realistic application codes. This paper
concerns the adaptation to hypercube multiprocessors of a 3-D Navier-Stokes
solver based on ADI algorithm. Two solutions for the management of data trans-
fer through the communication network are discussed. Performance results of the
implementation on a 32 nodes iPSC2-SX are also presented.

Keywords: Navier-Stokes equations. ADI algorithms. Parallel computers. Hy-
percube. Distributed memory multiprocessors.

1. Introduction. Numerical simulation of three-dimensional time- de-
pendant flows is a field of CFD which needs a large computational power
so as to yield realistics results. In this paper we study a parallel solver
for 3-D unsteady Navier-Stokes partial differential equations adequated to
distributed memory multiprocessors. Section 2 is devoted to the numerical
method and the algorithm used to solve the N-S equations. The main part of
the solver consists in the solution of Poisson equation by a modified ADI al-
gorithm. Section 3 discusses some mapping strategies on parallel processors
and give performances obtained on the iPSC2-SX using a ring ADI algo-
rithm's. Section 4 describes a so-called hypercube ADI algorithm's which
used i-cycle index-digit permutations to move data all over the processors.
Finally Section 5 compares the two approaches for different architectural
parameters of the communication network.
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2. The 3-D Navier-Stokes solver. For several years ONERA 1 and
LIMSI 2 collaborates on the development of 2-D and 3-D parallel Navier-
Stokes solvers for shared and distributed memory multiprocessors. A 2-D
solver for the numerical simulation of unsteady separated flows around an
airfoil at high Reynolds numbers has been implemented on a shared memory
multiprocessor [4]. A 3-D parallel solver is now under development [51, which
is based on the ADI method as exposed in the following sections.

2.1. Navler-Stokes equations and numerical method. The un-
steady 3-D Navier-Stokes equations for incompressible flows are written fol-
lowing a velocity-vorticity (V - 0) formulation [8]:

(2.1) AV + I X 0 = 6

(2.2) a__ + 1)Z = (. !)V + 'Zat

The equations 2.1 and 2.2 are approximated by using a centred finite differ-
ence method. Then the alterning direction method of [3] is used for both
the Poisson and the vorticity transport equations so as to obtain a numerical
solution with a precision of order 2 in space and 1 in time.

2.2. ADI algorithm for 3-D Poisson equation. The iterative al-
gorithm which has been chosen for the solution of the equation 2.1 is a
fractional step method with stabilization corrections [61, which is a general-
ization of the Douglas ADI method [7].
The equation :

(2.3) (L. + L, + L.)U =

with L. = 2 , LV = 82' Lx = 82

is then solved by iterating the three steps of 2.4:

Iteration n :

(2.4) (L. - 2w 2,.I)U
n +k = -(Lx + 2L1 + 2L8 + 2w,j.I)U" + 21P

(L, - 2w.,,I)U " +* = L5U" - 2-,,U"+

(L. - 2w.,,I)U =+1  L.U - 2wL,.U_+U

where wn, , wn,, jwn, are acceleration parameters.
Considering data dependencies, each one of these three steps is related to a
linear recurrence equation in one of the space directions [10].

Office National d'Etudes et do Recherchee Aeroepatiales
Laboratoire d'Informatique et do Math6matiques pour lee Sciences de I'Ing6nieur
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3. Distributed memory multiprocessors and mapping strate-
gies. Distributed memory architectures appear as a solution for the design
of highly parallel multiprocessors. In such systems a set of processors (nodes)
is connected in some fixed topology through a communication network. As
the opposite of shared memory system, data allocation onto processors local
memory is one of the key to efficiently exploit the potential parallelism of
an algorithm. A determinate solution for data allocation may inhibit the
activity of a part of the processors. Hence the systematic analysis of data
dependencies is an obligatory step in the design of well adapted codes for
such highly parallel machines. Moreover most of these machines do not
presently hide the parallelism to the user. Data flow between processors
must be expressed explicitly by means of message passing primitives.
Efficient algorithms for these multiprocessors are often the result of a trade-
off between the reduction of the time due to data communication in the
network and the reduction of the computation time. Moreover sending or
receiving a message is an operation which has an incompressible cost. Then
some gain may be obtained by reducing the number of messages flowing
through the network. The next sections discuss the influence of the map-
ping strategies on the data structure of the computational domain when
considering ADI algorithm.

3.1. Data structures for ADI algorithm. Considering the compu-
tational domain as a cube the first question concerns its partitioning into
equal substets and the assignment of these subsets onto the processors. Sev-
eral solutions have been already studied. In [11,121 Saad exposes solutions
for the implementation of 2-D ADI algorithms on ring and grid networks.
Saad also discusses alternatives to the standard Gaussian elimination for
the tridiagonal systems in ADI such as substructuring and cyclic reduction.
Results of implementation of ring and substructuring solutions for 2-D algo-
rithms are presented in [101 and estimated performances for the version of
the 3-D Navier-Stokes solver using substructuring may be found in [41.
For the 3-D case the splitting of the cube into pencils is suited to the ring
algorithm's, see Figure 1, while a domain decomposition into sub-cubes is
adapted to the substructuring algorithm on a 3-D processors grid, see Fig-
ure 2. The estimation of the performances of the substructuring algorithm
will be presented in an extended version of this paper. Staying with the
standard Gaussian algorithm for the solution of the three steps of 2.4, we
discuss here an alternative to the ring algorithm's which reduces the number
of messages travelling in the network at a cost of an increase in the amount
of data transfered.
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FIG. 1. Data structure and assignment for the ring algorithm's
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TABLE 1

Ring ADI on iPSC2-SX

one time step of the 3-D N-S code (64')
number of proc. 16 32

time in sec. 102 63

3.2. Implementation of ring ADI algorithm's on the IPSC2-
SX. Considering the data structure of Figure 1 the ring algorithm's has
been implemented on the 32 nodes iPSC2-SX installed at ONERA. The iN-
TEL iPSC2-SX is a distributed memory multiprocessor which interconnects
processors (i80386 microprocessor coupled to a Weitek 1167 coprocessor) in
a hypercube topology network. In a P processors hypercube network, each
processor with number i = 0...P - 1 is directly connected to 1og2(P) neigh-
boring processors according to the binary representation of i 191.
The table 1 presents the ellapsed times for one time step of the 3-D Navier-
Stokes parallel solver which has been obtained with 16 and 32 processors of
the iPSC2-SX. For a 643 domain the corresponding ellapsed time per mesh
point and time step is 2.4 x 10- 4 sec.

4. Hypercube ADI algorithm's. The 3-D ADI algorithm solves tridi-
agonal linear systems alternatively in each of the 3 spatial direction, say
1,2,3. Noticing that these systems can be solved independently, then it
is possible to transpose the data structure before each step of one ADI it-
eration so as to obtain local data storage in each processor adequated to
computation in direction 1,2 or, 3. This approach induces a clear separa-
tion between the communication phase and the computation phase. This
data permutation, which can be done in 1og2(P) steps using nearest neigh-
bors communications, may be considered as a generalisation of the matrix
transpose algorithm exposed in (131.
Let us consider an hypercube with P = P1 X P2 = 2 q1 x 2q 2 processors
(qj - q2). We assume now, without any loss of generality, that the cornpu-
tational domain is a cube of dimension N, with N = 21 and I > qj. Consid-
ering a splitting of the domain into P2 x P, x P, blocks of size N X N X N

a block can be identified by the tuple (i,jk)i=o...p2 -ljo...plk.=o...p,- 1 ,
while a processor is identified by (i, m)=.o p.-,, , = 1...- l.
Starting from the initial mapping suitable for parallel computation of the
ADI step in direction 3 which is,
MAP-3 : Vk, store block (i,j,k) on processor (ij) at adress k
we detail in the following how to modify this mapping in order to obtain a
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storage of the 3-D data structure adequated to ADI steps in direction 2 or
1.

4.1. Index-digit permutations for ADI algorithm. We use here

a modified notation of the one used in [2,3] but the techniques are similar.
Explanation of the intermediarry steps of the data movement in the hyper-
cube needs the use of the binary representation for the processors and blocks
identifiers :
B(iq2 ... i I jq,...ji I kqi.-..k1)2 represents the block B(i,j, k)10 . Following the
initial mapping, this block is stored at adress (k,...kl) 2 on the processor

(iq2...s'a, 9--.- )2- The adresses of the differents blocks of the data struture
are made of two fields, one for the processor number, and the other one for
the adress in local memory. The permutation suitable for ADI algorithm is
an indez-digit permutation. As demonstrates in [2] this kind of permutation
can be implemented as a sequence of i-cycles 3 . It is interesting to look at
what are the permutations or inter-processor communications that must be
implemented on one specific processor (i, j)10 in order to transpose the data
structure.
Starting from the MAP-3 mapping we want to obtain the MAP-2 mapping
(suitable for implicit computation into direction 2) by implementing i-cicles.
Where, MAP-2 is:
Vk, store block (i, k,j) on processor (i,j) at edress k
The first operations which are necessary for this operation are given in Table
2. Three different kinds of data movement are involved in this transposi-

tion. The permutation (labelled by -()*) concerns a modification of the
blocks storage in the local memory of the processor and gathers the blocks

that will be exchanged. The second one (labelled by M_) corresponds to
a communication between two neighboring processors. The third one (la-

belled by 4.) scatters the blocks, obtained from a neighbor processor, at
non consecutive adress in local memory.
Though more complicated 4, the transposition of the data structure so as
to obtain a mapping for computation into direction 1 can be implemented
using the same three i-cycles.
We must notice that each i-cycle operation involves q blocks and that the
initial mapping MAP-3 is obtained after any even number of ADI iterations.

an i-cycle Is an indez.digit permutation in which the most significant digit of the adress
is exchanged with any other digit, either in the adreas or the processor number.

' from B (ti,... I . I , t,...J,), to B (k,,...l,1 -5 ,+1  I i5 2 '".,k, 1 -, '..k ..
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TABUE 2

from MAP-S to MAP-S

I q3g...i ..i .. Il2L)
Bi..ij kq.jq1...i..ji I jqikqi......ki)2

B(iq2 ... it kqi..jq-I...ji I k_..kl2 G

BNi2 ..-'iI kqiijqi..i...i I jqlkq,...ki1)2
B(iq2 ... it kg..igi..ji I kq1...k1)2()

B(iq2 ... it k,-j.kqi..j I j~hjq1.1 ... k1 )2 S)
B i . ii Ikqikq...i..il 13I jl..k)

B(iq2 ... it kq,...ki I j,-j)

4.2. Imtplemtentation on IPSC2-SX. These ideas have been used for
implementing a Poisson equation solver on the 5-cube iPSC2-SX. The Table
3 presents the iPSC2 FORT RAN version of the three i-c yces G, E, S. From
the informations obtained when running this Poisson solver, performance
of the 3-D Navier-Stokes solver can be precisely evaluated. Moreover, op-
erations in each of the space direction of the computational domain being
independant, the 32 nodes of the iPSC2 can be used to simulate a 1024
nodes system running the hypercube ADI algorithm. The Table 4 gives
the evolution of the ellapsed time for computing one time step of the 3-D
Navier-Stokes solver versus the number of processors (recall that the ring
algorithm's takes 63 sec. on a 32 processors iPSC2-SX).
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FORTRAN implement ation of s-eycles for AD! on the iPSC2

C perform transposition

TYPE=M+100*GWDIR+1000*COUNT

scgatter blocks
CALL UPACK(NMBLK,SMBLK,PENCIL(IDEB),BUF(IOR)

SMBLK=SMBLK*2
NMBLK=NMBLK/2

I CONTINUE

TABLE 4
Hypercube AD! on iPSCS-SX (simulation r~esults)

one time step of the 3-D N-S code (643)
number of proc. 8 16 32 64 128 256 512 1024

time in sec. 325.9 171 93.9 49 27.6 15.33 9.2 5.8
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5. Influence of the communication network. The ring and hyper-
cube algorithms differs only in the way the data strucure is organized and
in the management of the inter-processors communications. A simple model

of the communication network will be used to evaluate the relative perfor-
mance of these two algorithms.
To send or receive a message of length N from one processor to a neighbor
takes a time of:

(5.1) a+NX 1

Where r is the start-up time (in sec.) and V the communication bandwidth
(in MB/sec.). Using this model the complexity of the communications in-
volved in one time step of the two versions of the 3-D Navier-Stokes solver

can be evaluated :
* ring algorithm: 4 x (P - I) X (r + ( X ×

* hypercube algorithm: 2 x (q, + q2) x ( " + (- xi-))
The Figures 3, 4, 5, 6 show some comparisons of the communication costs
of the two algorithms for different values of the parameters r and V and
assuming that the computational domain has a dimension N = 64. Let us
notice that in this case the ring algorithm's cannot use more than a 6-cube.
For Figure 3 we take parameters representative of an iPSC2 system (assum-
ing the possibility to interconnect 4K processors). Figure 4 (resp. 5) show
estimation relative to a NCUBE system [4] (resp. an AMETEK-2010 system
[51)). In Figure 6 we consider a "modified" version of the T800 Transputer

[61 with up to twelve links. 5

6. Conclusion. We have exposed a solution for the management of
data communications in a distributed memory multiprocessor which extends
the use of Gaussian elimination for ADI algorithm when the number of pro-
cessors is greater than the dimension of the computational domain. The
performances obtained on the iPSC2-SX and the estimations done for dif-
ferent parameters featuring the communication network show us that the
efficiency of this solution depends on the start-up time and communication
time ratio. A comparison of this approach with the one based on substruc-
turing techniques will be presented in a forthcoming paper.

Acknowledgements. This research was supported by grants from DRET.

It is not our purpose here to evaluate the communication networks of these multipro-
cessors, and this all the more since Transputer system and AMETEK-2010 used a grid
network, but rather to compare the performance of the two algorithms on a realistic basis.
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1ADI N=64 (NiIJSC2) - Stup=O.3ms - Com=2.4 MB/s,

FIw. S. Communication costa of the two algorithms

ADI N=64 (NNCUBE) - Stup=0.6ms - Com=0.5 MB/
F [a. 4. Comaiai~on costs of the two ulgorithms
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ADI N=64 (,,AMETEK) - Stup=O.3 ms - Com=20 MB/s
FIG. S. Communication costs of the two algorithms

ADl N=64 (-T800) - Slup=0.015 ms - Com=2.4 M/s
F IG. 6. Commtnication costs of the two algorithms
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Rayleigh Quotient Iteration as Newton's Method

J. E. Dennis and R. A. Tapia

Rice University
Houston, Teun

U. S.A.

Abstract

The inverse, shifted inverse and Rayleigh quotient iterations are
wellknown algorithms for computing an eigenpair of a symmetric matrix.
In this talk we established that each one of these three algorithms can be
viewed as a standard form of Newton's method from the constrained
optimization literature. Our equivalence leads naturally to a new proof of
the cubic convergence of Rayleigh Quotient Iteration.
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Krylov subspace methods: theory, algorithms, and
applications

Youcef Saad
Research Institute for Advanced Computer Science

Abstract

This paper gives an overview of projection methods based on Krylov subspaces for
solving various types of scientific problems. The main idea of this class of methods when
applied to a linear system Az = b, is to generate in some manner an approximate solu-
tion to the original problem from the so-called Krylov subspace Span{b, Ab,..., A n 1 b}.
Thus, the original problem of size N is approximated by one of dimension m, typically
much smaller than N. Krylov subspace methods have been very successful in solving
linear systems (Conjugate Gradients, GMRES,..) and eigenvalue problems (Lanczos,
Arnoldi,..) and are now becoming popular for solving nonlinear equations. We will
show some of the main ideas in Krylov subpace methods and discuss their use in solving
linear systems, eigenvalue problems, parabolic partial differential equations, Lyapunov
matrix equations, and nonlinear system of equations. Some numerical experiments are
presented to illustrate the concepts.

Key words: Krylov subspace methods, Conjugate Gradients, Parabolic equations, nonlinear Partial Differ-
ential Equations.
AMS(MOS) Classification: 65F.
Acknowledgements: This work was supported by the NAS Systems Division and/or DARPA via Cooper-
ative Agreement NCC 2-387 between NASA and the University Space Research Association (USRA). Work
was performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research
Center, Moffett Field, CA 94035.
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1 Introduction

In recent years Krylov subspace methods have become a useful and popular tool for solving
large sets of linear and nonlinear equations, as well as large eigenvalue problems. One of the
main reasons for their popularity is their simplicity and generality. When dealing with large
systems of equations, projection methods based on Krylov subspaces are often found to be
very efficient alternatives to the traditional approaches that are based on direct methods.
This trend is likely to accelerate as models are becoming more complex and give rise to
larger and larger matrices for which direct methods become prohibitively expensive.

Because of the success of these methods in solving large linear systems of equations,
much recent work has been devoted to extending their applicability to solving other types of
problems in Scientific Computing. For example, there has been substantial progress made
in using these methods for solving the nonlinear equations in computational fluid dynamics
[37, 22]. In addition, recent work has shown how these methods can be used to solve
equations in control such as Lyapunov equations [32] and there is current interest in solving
time dependent partial differential equations by the method of lines [17].

The purpose of this paper is to describe the general concepts used in Krylov subspace
methods and to give an overview of the different ways in which they are used. As will be
seen the method is fairly universal in that it can be used to provide approximate solutions
to virtually any linear problem and nonlinear. However, it is clear that the actual success
of the method will depend critically on the nature of the matrices at hand. Thus, conjugate
gradient type methods are very successful for symmetric positive definite linear systems but
have been rather unsuccessful with highly indefinite problems.

The next section is a brief introduction to Krylov subspaces. Section 3 discusses the
application of the method to linear systems, and Section 4 is on eigenvalue problems. Section
5 will be on evaluating the product of the exponential of a matrix A times a vector with
some applications. Finally, Section 6 will discuss the use of Krylov subspace methods for
solving nonlinear problems.

2 Krylov subspaces

Given a square matrix A and a nonzero vector v, the subspace defined by

Km- span {v, Av, A2V,...Am-lv} (1)

is referred to as a the m-th Krylov subspace associated with the pair (A, v) and is denoted
by K,,m(A, v) or simply by Km if there is no ambiguity. We start by stating a few elementary
properties of Krylov subspaces. Recall that the minimal polynomial of a vector v is the
nonzero monic polynomial p of lowest degree such that p(A)v = 0. Clearly, the Krylov
subspace K,. is the subspace of all vectors in CgN which can be written as x = p(A)v, where
p is a polynomial of degree not exceeding m - 1.

Proposition 2.1 The Krylov subspace K,,. is of dimension m if and only if the degree of
the minimal polynomial of v with respect to A is not less than m.
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In practice it is rather uncommon that the degree of the minimal polynomial is less than
N, even in exact arithmetic. If this were to happen then it is usually helpful rather than
harmful because of the following proposition.

Proposition 2.2 Let p be the degree of the minimal polynomial of v7. Then K is invariant
under A and Km = K, for all m _ p.

Thus, in case p is small we can work work in subspace of dimension / and be able to solve
the problem exactly in this small subspace.

Working directly with the basis {Ajv}j=o,...,,_ is likely to lead to serious numerical
difficulties. Most Krylov subspace methods utilize either orthogonal or hi-orthogonal bases
of Km. Thus, the procedure introduced by Arnoldi [11 builds an orthogonal basis of the
Krylov subspace K, by the following algorithm.

Arnoldi's algorithm:
1. Start: Choose a vector v, of norm 1.

2. Iterate: for j= 1,2,...,m compute,

h~i = (Av,vi) i = 1,2,..., 3  (2)

jw = A,,j - hjjvj (3)
i=1

hj+l,. = -- lwJ2 (4)
"Oj+i = w/hj+lj (5)

This algorithm is mathematically equivalent to a Gram-Schmidt process applied to the
power sequence v, Av ..... A -v, in that it would deliver the same sequence of vi's in ezact
arithmetic. The algorithm will stop if the vector w computed in (4) vanishes which happens
if the degree of the minimal polynomial for v is j. This is referred to a 'lucky' breakdown since
as was seen above it means that the original problem (linear system, eigenvalue problem)
can be solved exactly in a j-th dimensional subspace.

The following are a few simple but important properties satisfied by the algorithm.

Proposition 2.3 The vectors v2, v 2, ... , v,, form an orthonormal basis of the subspace Km =
span{vi, Avl,..., A vl.

Proposition 2.4 Denote by V. the N x m matrix with column vectors vl,...,v, and by
Hm the m x m Hessenberg matriz whose nonzero entries are defined by the algorithm. Then
the following relations hold:

AV. = VHm + h.+l,.v.+le (6)

V.T AV. = H. (7)
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Note that when A is symmetric then (7) implies that the matrix Hm is tridiagonal
symmetric and ,a a result Arnoldi's algorithm simplifies into an algorithm which involves
only three consecutive vectors at each step. The corresponding algorithm is the well-known
Lanczos algorithm.

The second of the relations in the proposition indicates that the Hessenberg matrix H,,.
is nothing but the matrix representation of the projection of A onto K,., with respect to
the orthogonal basis V,.. Analysis of various projection methods based on Krylov subspaces,
indicate that, loosely speaking, Km contains the most significant information of A, in that
the outermost eigenvalues of A are well represented by those of its projection onto K.,
for large enough m. The main idea of Krylov subspace methods is to project the original
problem into Km.. In the next sections we will see how this is done via simple Galerkin type
procedures, for standard linear algebra problems. Then in the following sections we will
address other types of problems.

The relation (6) has been exploited in [13] for solving special Sylvester's equations that
arise in the design of reduced-dimensional state estimator. The Arnoldi and block-Arnoldi
algorithms have been used in [5] to compute numerically the controllability of a linear system.

3 Krylov subspace methods for solving linear systems

Given an initial guess z0 to the linear system

Am = b, (8)

a general projection method seeks an approximate solution x. from an affine subspace Zo+Kn
of dimension m by imposing the Petrov-Gaerkin condition

b- Ax,,±L, (9)

where Lm is another subspace of dimension m. A Krylov subspace method is a method for
which the subspace K, is the Krylov subspace

Km(A, ro) = span{ro, Aro, A 2ro,...., Am-'ro}, (10)

in which ro = b- Azo. The different versions of Krylov subspace methods arise from different
choices of the subspaces Km and Lm and from the ways in which the system is preconditioned.
The most common choices of Km and L,. are the following.

1. L.. = K,. = K,(A,ro). The conjugate gradient method is a particular instance of
this case when the matrix is symmetric positive definite. Another method in this class is
the Full Orthogonalization Method (FOM) [291 which is closely related to Arnoldi's method
for solving eigenvalue problems [1]. Also in this class is ORTHORES [19], a method that is
mathematically equivalent to FOM. Axelsson 12] also derived a similar algorithm for general
nonsymmetric matrices.

As an example we outline here the FOM method for solving linear systems. Assume that
we take vi = ro/liro12 and run m steps of Arnoldi's method described in the previous section.
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Then, the approximate solution is of the form zo + V,,,y, where y,,, is some m-vector. The
Galerkin condition (9) with L. = K. gives immediately that y, = H; 11r0j12e1.

2. L,,. = AK. ;K,. = K.,(A, ro). With this choice of L.,, it can be shown, see e.g., [33]
that the approximate solution z,, minimizes the residual norm [1b - AzlI2 over all candidate
vectors in z 0 + K,. In contrast, there is no similar optimality property known for methods
of the first class when A in nonsymmetric. Because of this, many methods of +his type have
been derived for the nonsymmetric case [3, 19, 15, 34]. The Conjugate Residual method [10]
is the analogue of conjugate gradient method that is in this class. The GMRES algorithm
[34] is an extension of the Conjugate Residual method to nonsymmetric problems.

3. L, = Km (AT,ro);K_ = K (A,ro). Clearly, in the symmetric case this class of
methods reduces to the first one. In the nonsymmetric case, the biconjugate gradient method
(BCG) due to Lanczos [21] and Fletcher [16] is a good representative of this class. There
are various mathematically equivalent formulations of the biconjugate gradient method [30],
some of which are more numerically viable than others. An efficient variation on this method,
called CGS (Conjugate gradient squared) was proposed by Sonneveld [35].

Apart from the above three basic methods there are a number of techniques for non-
symmetric problems that are mathematically equivalent to solving the normal equations
ATAz = ATb or AAT y = b by the conjugate gradient method. We will comment that these
methods are often too quickly dismissed as inferior because of the fact that the condition
number of the original problem is squared. For problems that are strongly indefinite they
do represent, however, the only viable alternative, since none of the above three types of
methods would work in this situation.

An important factor in the success of conjugate gradient-like methods is the precondi-
tioning technique. This typically consists of replacing the original linear system (8) by, for
example, the equivalent system

M- 1 Az = M- 1 b (11)

In the classical case of the incomplete LU preconditionings, the matrix M is of the form
M = LU where L is a lower triangular matrix and U is an upper triangular matrix such that
L and U have the same structure as the lower and upper triangular parts of A respectively. In
the general sparse case, the incomplete factorization is obtained by performing the standard
LU factorization of A and dropping all fill-in elements that are generated during the process.
This is referred to as ILU(0), or IC(0) in the symmetric case.

4 Krylov subspace methods for eigenvalue problems

An idea that is basic to sparse eigenvalue calculations is that of projection processes [31].
Given a subspace K spanned by a system of m orthonormal vectors V =v,. .. ,v] a
projection process onto K - span {V} computes an approximate eigenpair A E l,fi E K
that satisfy the Galerkin condition,

(A - AI)f, I K (12)
The approximate eigenvalues A are the eigenvalues of the m >. m matrix C = VTAV.

The corresponding approximate eigenvectors are the vectors fi = Vyi where yi are the
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r eigenvectors of C. Similarly, the approximate Schur vectors are the vector columns of
VU, where U = [ul,u 2,. . ,u,.] are the Schur vectors of C, i.e., UTCU is quasi-upper
triangular. Thus, one possible method for computing eigenvalues/ eigenvectors of large
sparse matrices is to use the Arnoldi process [1, 28] which is a projection process onto
SKm= apanivi, Avl,..., A"' 1 v l}. Once the Arnoldi vectors i1, .... vn have been generated
we can use V for a projection process onto Kn. The matrix VZAV, which is needed for
this purpose is nothing but the upper Hessenberg matrix Hn generated by the algorithm.

Note that the Arnoldi algorithm utilizes the matrix A only to compute successive matrix
by vector products w = Av, so sparsity can be exploited. As m increases, the eigenvalues
of H,. that are located in the outermost part of the spectrum start converging towards
corresponding eigenvalues of A. However, the difficulty with the above algorithm is that as
m increases cost and storage increase rapidly. One solution is to use the method iteratively:
m is fixed and the initial vector vi is taken at each new iteration as a linear combination
of some of the approximate eigenvectors. Moreover, there are several ways of accelerating
convergence by preprocessing v, by a Chebyshev iteration before restarting, i.e., by taking
VI = tk(A)z where z is again a linear combination of eigenvectors.

A technique related to Arnoldi's method is the nonsymmetric Lanczos algorithm [24, 12]
which produces a nonsymmetric tridiagonal matrix instead of a Hessenberg matrix. Unlike
Arnoldi's process, this method requires multiplications by both A and AT at every step. On
the other hand it has the big advantage of requiring little storage (5 vectors). Although no
comparisons of the performances of the Lanczos and the Arnoldi type algorithms have been
made, the Lanczos methods are usually recommended whenever the number of eigenvalues
to be computed is large.

Finally, if the matrix is banded an efficient solution is the shift and invert strategy which
consists of using one of the above iterative methods (subspace iteration, Arnoldi, or Lanczos)
for the matrix (A- aI)-1, where o, is some shift chosen say at the center of some small region
of the complex plane where eigenvalues are sought. The matrix (A - I) - ', need not be
explicitly computed: all we need is to factor (A - crI) into LU and subsequently at each
step of the iterative method solve two triangular systems one with L and the other with U.
Thus band structure can be fully exploited. In [25] several implementations of the shift and
invert strategy are considered and the problem of avoiding complex arithmetic when A is
real is addressed.

5 Approximation to eav and applications

Computing approximations to the exponential of a matrix is usually not too hard a problem
for small dense matrices. For large matrices, this can become a rather challenging task be-
cause of the fact that eA is, in general a dense matrix even when A is very sparse. Fortunately,
in realistic applications it is often not the exponential of the matrix that is sought but rather
the product of this exponential with some vector v. The question of approximating eav for
any given vector v was considered in [17] where polynomial and rational approximations to
the exponential were used. Here we summarize only the method proposed in [17] that is
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based on polynomial approximation to eAv. The desired approximation to eAv is expressed
in the form,

ea - p,-,(A)v (13)

where p,.-, is a polynomial of degree m - 1. Thus, the vector on the right-hand-side of (13)
is an element of the Krylov subspace (1) and it is convenient to express it in the orthonormal
basis V. = [v2,v2, V,... ,],j generated by Arnoldi's algorithm seen earlier. Therefore we
will write the desired approximation z, = p,-,(A)v as z, = V,.y where y is an m-vector.
There remains to choose the unknown y. In [171, the choice y -- eHnei with / = JivIla was
suggested, leading to the following formula,

eA - PY.HVeel (14)

The quality of this approximation was also analyzed in [17 and the following result was
shown.

Theorem 5.1 Let A be any square matriz and let p = JJAjj2 . Then the error of the approz-
imation (14) is such that

IiP -/VeHeI" (15)

Experiments reported in [17], reveal that the approximation (14) can be quite accurate even
for moderate values of the degree m. The theorem shows convergence of this approximation
as m increases to infinity, but the bound (15) is not sharp in general. Note also that the
above approximation is exact when m = N, see [17].

To illustrate the concepts described in this sections we now describe two applications.
The first is in solving parabolic equations and the second in handling large Lyapunov matrix
equations.

5.1 Application 1: parabolic equations

One application of the above formulas is that one can approximate e'Av for all t as

tA He v;3V, net Hel. (16)

This provides a way of solving the model homogeneous ordinary differential equations b =
-Aw, whose solution is

w(t) = e-w0 (17)

in which wo is the initial condition.
We now consider the following linear parabolic partial differential equation:

=u(z't) - Lu(z,t)+ s(z), z E 0 (18)
at

u(O, z) = uo, Vz E

u(t,Z) = ,,(z), x E 00,t > 0.

(19)
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where L is a second order partial differential operator of elliptic type, acting on functions
defined on the open bounded set fl. If the standard semi-discretization method (method of
lines) is used to solve (18), then this partial differential equation is discretized with respect
to space variables, resulting in a system of ordinary differential equations of the form

dt -Aw(t) + f

W(0) = Wo

whose solution is explicitly given by

w(t) = A-'f + etA - A-f) (20)

which simplifies to (17) in the case of a homogeneous system (f = 0). Note that if we denote
by tb(t) - w(t) - A-'f and accordingly, tb0 - wo - A- 1 f, then tb(t) satisfies a homogeneous
system and we have

()=e-io (21)

It is therefore possible to obtain the solution at time t in one single step, if desired, by
applying the matrices A 1 and e - A to certain vectors.

If, instead of attempting to compute the solution at time t in one single step, we use a
time-stepping procedure, then we will write at a given step t,

tb(t + 6) = e-sAtb(t). (22)

To be able to use (22) in a numerical procedure, we need to be able to compute a vector of
the form exp(-6A)v at every step of the procedure. The techniques outlined above can be
used for this purpose. An important point to make here is that the corresponding procedure
derived from (14) is essentially an explicit scheme, because it only requires evaluating matrix
by vector products.

We would like now to discuss some of the aspects of the method based on the above
approach. First, as was just pointed out the method is explicit in nature, since it does
not require any solution of linear systems with the matrix A. The question that may be
raised here concerns its stability. In fact, there is no stability difficulty in the usual sense
of ODE methods because of the very nature of the scheme. Indeed, assuming that at
every step the approximation to the exact solution w(t) at equidistant intevals is defined as
wk+1 = e-AJtwiv + E,, where eA, is the error introduced in the approximation of the exponential
term (including arithmetic rounding), we see immediately by comparing with the formula
(21) for the exact solution that the error ek at each step satisfies:

ek+1 = e-A+e + Ck (23)

In other words the scheme is unconditionally stable, in presence of a positive definite operator
A.
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The above stability property has been extended to a similar scheme proposed in [18] for
the case where f may depend on time and A is independent of time. Note, however, that
for this more realistic cue one must be careful concerning the scheme used, as there are
schemes whose stability do depend on the stepsize.

This may seem to be in contradiction with the usual conventional wisdom that explicit
schemes require very small time steps for stability to be guaranteed. The first reason why
this does not apply here is that the argument given above is limited to very specific problems,
namely problems with constant coefficients. In fact the exact solution can be computed in
one step provided high enough order approximation to the exponential is used!

The key point here is the possibility of using high order approximation. The importance
of using high order schemes both in explicit and implicit methods has been emphasized in
a few recent papers, see e.g., [36], [27]. We report here an experiment from [181 to further
illustrate this point. The experiment was performed on a Cray Y-MP/832.

We consider a three-dimensional problem of the form

ut = u. +u. +u, , z E (0,1)
u = 0 on the boundary

which is discretized using 17 grid points in each direction. This yields a matrix of size
N = 15' - 3375. The initial conditions are chosen once the matrix is discretized, in such a
way that the solution is known for all t. We take

1 ii'w . jj'r . kk'ir
U(0,zi)= i',ji '+ *' k+1 sin 4;1 sin -sin -

n +1 n+ 1

The above expression is simply an explicit linear combination of the eigenvectors of the
discretized operator.

The goal is to integrate this partial differential equation between t=0 and t=0.1, and
achieve an error-norm at t = 0.1 which is less than e = 101. Here by error-norm we
mean the 2-norm of the absolute error. Both the dimension m of the Krylov subspace and
the time-step At can be varied. Normally, we would first choose a degree m and then try
to determine the maximum At allowed to achieve the desirable error level. However, for
convenience we have proceeded in the opposite manner: we first select a step-size At and
then determine the minimum m that is needed to achieve the desirable error level.

What is shown in Table 1 is the various time steps chosen (column 1) and the minimum
values of m (column 2) to achieve an absolute error less than e = 10- 10 at t=0.1. We
show in the third column the total number of matrix-by-vector multiplications required to
complete the integration. The times required to complete the integration on a Cray Y-MP
are shown in the fourth column and the final 2-norm of the error achieved is shown in the 5-th
column. The vector e-H el was computed using Padi or Chebyshev rational approximation
to the exponential. The exact type of approximation used in each case is indicated in the
last column of the table, with P(k, k) meaning Padi of type (k, k) and C(k, k) meaning
Chebyshev of the type (k, k). Here the Chebyshev approximation corresponds to the best
uniform approximation to e-' on the positive real axis as described in [11].
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At m M-vec's Time (sec) fIErrorIJ2 Method
0.5000E-04 6 12006 0.8173E+01 0.1957E-11 P(2,2)
0.1000E-03 7 7007 0.4793E+01 0.3308E-10 P(2,2)
0.5000E-03 10 2010 0.1342E+01 0.1800E-10 P(4,4)
0.1000E-02 12 1200 0.7983E+00 0.2260E-10 P(4,4)
0.5000E-02 20 400 0.2672E+00 0.5271E-10 P(8,8)
0.1000E-01 26 260 0.1740E+00 0.7247E-10 P(8,8)
0.2000E-01 34 170 0.1080E+00 0.3236E-10 C(14,14)
0.3000E-01 39 156 0.9876E-01 0.6362E-10 C(14,14)
0.4000E-01 44 132 0.8030E-01 0.4122E-10 C(14,14)
0.50OOE-01 49 98 0.5932E-01 0.5791E-10 C(14,14)

0.1000E+00 71 71 0.4186E-01 0.9993E-10 C(14,14)

Table 1: Performance of the polynomial scheme with varying accuracy on the Cray YMP.

Since the matrix is symmetric, we have used a Lanczos algorithm to generate the v's
instead of the full Arnoldi algorithm. No reorthogonalization of any sort was performed. The
matrix consists of 7 diagonals, so the matrix by vector products are performed by diagonals
resulting in a very effective use of the vector capabilities of the YMP. It was estimated that
the average Mfilops rate reached (excluding the calculation of exp{-H}ei) was around 220.
This is achieved with virtually no code optimization.

Observe the tremendous gains in computational time and in the number of calls to the
matrix by vector multiplication routine, as the order increases. The gain in time is nearly
200 between the lowest degree used (6) and the highest degree used (71).

One the main attractions of a scheme based on this approach is the high degree of
parallelism that it offers. There are opportunities to exploit parallelism in virtually every
part of the algorithm. However, it is often argued that the the loss of efficiency, incurred
by mandatory smaller step-sizes, exhibited by explicit schemes as compared with implicit
schemes outweighs the benefits of the high degree of parallelism permitted by the explicit
scheme. For simple problems such as the one tested above, the argument is certainly not
true because of the possibility of using high order schemes as described in this section. It
remains to be seen whether the argument is still valid for the more complex case where A
and/or f depend on time.

The usability of this approach has recently been extended to the case of a non-cotistant
forcing term f with very encouraging results. Extensions to the more general case where
A is also time dependent, or a nonlinear function in v, are currently under investigation.
Note that this would provide alternative ways of solving time dependent partial differential
equations by the method of lines.
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5.2 Application 2: the Lyapunov matrix equation

Another direct application described in [32], is for solving the matrix Lyapunov equation,

AX + XAT + bbT = 0, (24)

which is a common problem in the study of dynamical systems with single input,

= Au + bg. (25)

The exact expression for the equation (24) in the case where the corresponding system (25)
is controllable is given by the expression

X = j0 erAbbTeA Tdr. (26)

known as the controllability Grammian of the dynamical system. In [32] the solution X
as provided by (26) was approximated by replacing the function e'Ab by its approximation
(16). Interestingly, the result of substituting the approximation (16) in (26) leads to an
approximate solution of the form X. = V,.G.V,7, where V, is the matrix of the Arnoldi
vectors, and C,. is an m x m matrix which, incidentally, is the solution of a Lyapunov matrix
equation involving m x m matrices. In fact, a rather unexpected result shown in [32] is that
this approximation provided by the above integration process is mathematically equivalent
to a Galerkin method applied to (24) over the subspace of matrices of the form VhGVZ,
where V. is fixed and G runs over the set of m x m matrices. The inner product used for
this Galrkin process is defined by < X, Y >= tp(YTX).

Large Lyapunov equations that cannot be handled otherwise have been solved in this
manner. As an illustration, we now consider a test example derived from the discretization
of a parti.l differential equation of the form:

Au + F(xy)g(t) (27)

in a rectangular domain, with Dirichlet boundary conditions. Here A =. + is the
Laplace n operator. If we discretize the rectangle using n. + 2 points in the z direction and
n, + 2 points in the y direction, the above equations lead to a matrix problem of the form:

it = Au + bg (28)

where A is square of dimension N = n.n,. In this experiment we took n. = 20 and n. = 40
leading ;o a matrix of size 800. We have taken b to be simply el the first column of the
identity. Tests with other choices for b showed similar results. First we would like to show
the beh vior of the residual achieved by the Krylov subspace method outlined above, as the
degree n& varies. Table 2 shows the scaled Frobenius norm of the residual, i.e., the quantity
lAX"' + X,,AT + bbTllF, where lIZIJF = (tr[ZTZ]IN) 1/. This is done for m = 5,10,15,20.

We have used the Arnoldi process instead of the Lanczos algorithm on purpose, despite
the fact that the matrix is symmetric, in order to give an idea of the behavior in the more
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m IlRe Ill, Time (sec)
5 1.10 E-04 0.18

10 5.40 E-06 0.23
15 7.92 E-07 0.35
20 1.92 E-07 0.45

Table 2: Performance of the Krylov subspace method for the Lyapunov matrix equation.

general situation. The table indicates that the accuracy of the Krylov subspace approxima-
tion to the Lyapunov equation is good for very small m and then improves slowly. The times
reported in this table are in seconds on the Ardent Titan with two processors and have been
obtained using the -03 compiling option. For details and comparisons with other techniques
the reader is referred to [32].

6 Nonlinear Krylov subspace methods

This section gives an overview of some basic techniques based on Krylov subspaces for solving
systems of nonlinear equations. We start by discussing the various ways in which general
nonlinear projection methods can be defined.

6.1 Nonlinear projection methods

There are several ways of generalizing the standard Galerkin or Petrov Galerkin methods
to nonlinear equations. For example, Marion and Temam [23] define nonlinear Galerkin
methods by projecting the original equations onto nonlinear manifolds instead of linear
subspaces. Our approach is more conventional in that we still use linear subspaces but may
impose nonlinear Galerking conditions.

Consider the nonlinear system
F(u) = 0, (29)

where F is a nonlinear function from RN to 0N. At each iteration of a general nonlinear
projection method we select a (linear) subspace K and we seek an approximate solution to
(29) of the form u + 6 where 6 belongs to the subspace K and u ir the current iterate. Note
that the subspace K changes at every step of the nonlinear iteration. The standard case
examined in [8] is when K is a Krylov subspace associated with the Jacobian of F at the
current iterate. The various nonlinear projection methods we consider differ in the way the
vector 6 is chosen in the subspace.

A natural choice for the next iterate is to select a vector 6 in K such that

(u + 6) -IlF(u + 6)11' (30)
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is minimized. Although this is a nonlinear least squares problem, from a practical point of
view it is much easier to solve than the original problem when the dimension m of K is
much smaller than N. The motivation for this approach is that one can exploit a number of
highly efficient packages, such as MINPACK, or NL2SOL, for solving least squares problems
of small dimension, such as (30).

Let V = [v1,v 2, ..., v,] be an N x m matrix whose column vectors represent an orthonor-
mal basis of the subspace K and write 6 as

6 = VY, (31)

where y is an rn-vector. The function (30) to be minimized becomes a function of y defined
by

g(y) = 1IF(u + Vy)ll2 
(32)

The gradient of this function at y is given by

Vg(y) = VTJ(u + VY)TF(u + Vy) (33)

where J(z) is the Jacobian of F at the point z E N Notice that the gradient of f is
Vf(u) = J(u)TF(u) and so we have the simple relation Vg(y) = VTVf(u + Vy).

A necessary, but not always sufficient, condition for y" to be a minimum of (32) is that
the gradient of g at y* vanishes, i.e., we must have

VTJ(u + Vy*)TF(u + Vy*) = 0 (34)

This suggests simply solving the equations,

(j(U + Vy)V)TF(u + Vy) = 0 (35)

as a means for finding a minimizer of (32), although we know that the set of solutions of
(35) is larger than the set of minimizers of (32). We refer to the above system of nonlinear
equations as the set of normal equations for minimizing (32).

When solving the above normal equations the Jacobian must be reevaluated at each new
iterate and this may be uneconomical. An alternative is to freeze J(u + Vy)V to be the
system of vectors computed at, say, y = 0 and solve the set of modified equations:

(J(u)V)TF(u + Vy) = 0 (36)

This is a particular case of the Petrov-Galerkin condition

WTF(u + Vy) = 0, (37)

where W is an N x m matrix. Two particular cases are noteworthy:

1. W = V which corresponds to the Galerkin case.

2. W = JV which was naturally derived above;
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When F is linear the first case corresponds to the conjugate gradient method if the coefficient
matrix is symmetric and Arnoldi's method otherwise. The second case corresponds to the
clas of methods based on minimizing the residual norm, a few representatives of which are
ORTHOMIN, GCR, GMRES, see [34] for details.

Finally, one may linearize F(u + Vy) in (37) around u and derive fully linearized tech-
niques which correspond to solving the linear system,

WT[F(u) + J(u)Vy] = 0 (38)

where J(u) is the Jacobian of F at the current iterate u. The above linear system is m-
dimensional and will admit a unique solution if the section WTJ(U)V, which is an m x m
matrix, is nonsingular. In the particular case where W = JV this means that the columns
of JV must be linearly independent. Note that (38) represents one way of approximately
solving the Newton system

F(u) + J(u)6 = 0 (39)

at every step of Newton's method. Thus, the fully linearized techniques are a particular case
of a class of methods that are commonly referred to as inexact Newton methods and have
been studied in the litkrature, ( see, e.g., [14, 6, 26, 8, 7]).

6.2 Globally convergent nonlinear Krylov methods
In this section we only consider the fully linearized methods in the sense defined above. To
guarantee global convergence, the usual inexact Newton methods must be modified in several
ways. A few such modifications have been proposed in [8]. Moreover, in [71 a number of
convergence results for these techniques have been established. We would like to summarize
some of these results here.

The simplest modification involves a backtracking procedure. In this technique, an iter-
ate u, is given and we define the next iterate in the form u, + Ap,, where p,, is any descent
direction and A is selected by a procedure which ensures that the function f decreases suffi-
ciently at each iteration and that the iterate makes sufficient progress towards the solution.
One such procedure based on linesearch backtracking is idescribed below. The search direc-
tion p, is provided by an approximate solution to the Newton system J(u,)p = -F(u,),
e.g., via FOM or GMRES. It is easy to show that p, is a descent direction at u. whenever
we have

[[F(u.) + J(u.)p,,J2<lJF(u.)l 2,

which means that the residual norm for the Newton system J(u,)p = -F(u.) must be
strictly reduced from that associated with p = 0. In particular, it is common to require that
a condition of the form

IIF(u,) + J(u.)p.12 < ,7.IIF(u.)I12,
where 1, < /<1, in the context of iterative methods.

In the procedure described below the two parameters in, 90., are such that 0 < 6.ji <
8,,. < 1, the simplest choice being 6rm, 0,,,., = 1/2. The procedure requires another

490



parameter e* > 0 which is used to essentially rescale the starting step in the process in order
to prevent it from from being too small.

Algorithm 3.1: General Backtracking Procedure

1. Set A = max{l,e'IVt }.

2. If f(u,. + A\p.) < f(u,,) + aAVf(u,) Tp,,, then set A, = A, and exit. Else:

3. Choose i e [ ,,,.,]; set A +- i. Go to (2).

The following theorem [7] is a general convergence result for sequences generated the
above algorithm.

Theorem 6.1 Let f -= 1FI1 be differentiable and assume that its gradient is such that

IlVf(Z) - Vf(y)112 _ -II= - Y112, for all E N. (40)

Let p. be such that IIF, + Jpl2 5 ,- IF.II2 for all n, with 7 < 1. Further, let each iterate be
chosen by the General Backtracking Algorithm. Then, either

lirn f(u) = 0 (41)

or

lin I1Pn1l2 = 00. (42)

Moreover, superlinear convergence will essentially take place at the additional condition
that 71n --+ 0. Global convergence of the method using the trust region model approach has
also been analyzed in [7].

One of the most successful ways of using nonlinear Krylov subspace methods is for solv-
ing nonlinear equations in which the Jacobian of F is not available or is too expensive to
compute. Note that the cost of producing the Jacobian may well take into account the initial
programming effort. The reason why we can still use the methods outlined above is that
Krylov subspace methods do not require the Jacobian matrix J explicitly, but only its action
on a vector v. This action can be well approximated by a difference quotient of the form

F(u + ov) - F(u)J (u )V l0

where u is an approximation to a solution of (29), and a is some small scalar. The above
observation has been exploited in several papers [37, 22, 20, 9] to accelerate fixed-point
iterations of the form

Un+1 = M(un)

by applying the above techniques to the system F(u) - u - M(u) = 0. Typically, the
Jacobian of the mapping F is a dense matrix and it may be impractical mpute it for
large problems.
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6.3 Application : equations of semi-conductor device simulation

There are several ways of writing the equations of semi-conductor device simulation. One
form of the equations uses the "quasi-Fermi levels" v and w that are related to the electron
density n and hole density p by n = e"- and p = e" . The dimensionless form of steady
state equations are as follows,

V. (eu-Vv) = 0, (43)

V. (e-u Vw) = 0, (44)

-V 2u + e"' - e' - ic = 0, (45)

subject to appropriate (possibly mixed) boundary conditions. The first two equations rep-
resent the continuity equations for electrons and holes while the third is Poisson's equation
for the (normalized) potential u. The term k, is the doping profile (in units of the intrinsic
density of the semiconductor), which is essentially a source term. For more details about
the above system of equations and the assumptions made see, e.g., [4, 20].

The above system represents a coupled nonlinear system of three partial differential
equations. The so-called decoupling algorithm used in this context to solve this system
consists of a Block Gauss-Seidel iteration on the discrete version of the above equations. It
can be briefly described as follows. Given the dimensionless potential u from the previous
iteration, one obtains the intermediate variables v and then w by solving (43) and then (44).
Then the potential equation (45) is solved to obtain a new potential fi. The whole mapping
from the old potential u to the new potential -E will be denoted T:

fi = T(u). (46)

Whereas the above algorithm is very robust in practice, it is found that there are situ-
ations where it becomes very slow. The method has been in general abandoned in favor of
the Full Newton schemes to solve the coupled system (43)-(44)-(45), see reference [4]. The
Newton equations are typically solved by direct methods. As simulators are now starting to
cover three-dimensional models, there is a regain of interest in iterative methods for solving
the Newton equations.

Another approach proposed in [20] is to apply an acceleration procedure to the fixed
point iteration uk+1 = T(uh). In other words we would like to solve the system

u - T(u) = 0.

Note that the Jacobian of T is generally a dense matrix here and would be rather difficult
to compute. However, as was stressed before there is no difficulty using a procedure such as
GMRES to compute the zero of u - T(u) even when the Jacobian is not explicitly available.
This was implemented and tested in [20]. A comparison with the non-accelerated version of
the decoupling algorithm and the accelerated version showed considerable gains in speed, a
factor of about 8 in the example reported. Moreover, GMRES acceleration was also vastly
superior to two variants of Chebyshev acceleration schemes. This substantial superiority can
be attributed to the capacity of GMRES to take advantage of the clustering of the spectrum
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of the Jacobian of T around the origin. This property of j[T.] can be related to the compact
differentiability of the continuous mapping T. Like other conjugate gradient type methods,
GMRES is able to take advantage of a spectrum in which the rate of convergence is slowed
down by a few isolated eigenvalues only. Chebyshev type schemes do not take advantage of
any clustering of the spectrum, but only the overall size and shape of its convex hull.

7 Conclusion

We have shown several ways in which Krylov subspaces can be used to solve various types
of scientific problems. The scope of application areas where these methods can be used has
been steadily widening in recent years. One might say that the method constitutes in effect
a universal way of reducing the dimensionality of the original problem. Perhaps one of the
most challenging areas where the method can be used is in solving inverse problems. Some
of the ideas presented in Section 6 may possibly be exploited for this purpose but there is
still much to be done in this direction.
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1 Introducti, -i

The field of numerical optimization, one of the most challenging areas of numerical analysis, has

recorded an impressive growth in the past few years. Apart from widely known developments
in linear programming (see [23], for instance), this growth has also been fueled by a steadily

increasing interest in nonlinear problems involving a large number of variables. However, the
importance of the new results and the power of the new algorithms developed are probably not
fully appreciated by the larger community of numerical analysts and, even more importantly,

by the community of potential users of large scale nonlinear optimization methods. Recent

publications devoted specifically to large scale problems include [18], [9], [10], and [2].
It is a widely held view that only rather small problems can be handled by the techniques

available. Specifying nonlinear optimization problems in more than 20 variables, say, is still

considered by many as a risky modelling approach, mostly because the problem's solution is

likely to be impossible with the existing algorithms. It is true that this view was justified ten

years ago. The present situation is however quite different and it is the purpose of this paper to
stress this change and ', present some of he concepts that resulted in this progress.

These concepts will be presented here from the authors' very personnal (and maybe biased)

point of view. In particular, no attempt is made to discuss every concept and significant recent

development in the area, rather the exposition will focus on two topics that are considered to be
fundamental by the authors. We will also outline 6ur present and forthcoming research in this

area, both from the algorithmic and software perspective.
The first part of this paper is devoted to an introduction to the classes of partially separable

and group partially separable functions. Understanding and exploiting these concepts is, in our

opinion, central to the development of efficient and reliable methods for large scale problems, much

in the same way that sparsity is a key to large scale numerical linear algebra. This introduction

is contained in Section 2.

The second part of the paper discusses the LANCELOT software project, whose purpose is to

produce a self contained system for large scale nonlinear optimization. The discussion emphasizes

the main objectives of the system, with a brief discussion of some data input and implementation

issues.

2 The structure of nonlinear problems

2.1 A tutorial on partial separability

Very few numerical analysts would contest today the crucial role played by the various techniques
for exploiting the structure of a problem in the development of practical computational methods

for large scale problems. Sparsity in large systems of linear equations, domain decomposition in

the numerical solution of partial differential equations and structure in the interpolation equations

for function approximation are probably the three examples that come first to mind. The situation

is entirely similar in large scale nonlinear optimization, where exploiting the structure of large

problems is the only reasonable way to tackle their solution.
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Introduced in 1981, by Andreas Griewank and the third author in 115), the notion of a partially

separable function can be viewed as a way to describe the structure of a nonlinear function in

terms of an mderlying geometry (i.e. subspaces and their relations).

It is the authors' belief that this notion can be very helpful, not only to algorithm designers,

but also to potential users of these algorithms. Indeed, for a method to exploit structure, it is

very beneficial that the user describes this structure in a way coherent with the implementation.

This in turn supposes that the user should be at least moderately familiar with the principles of

the description used.

The concept of partial separability will be introduced and analysed by a simple yet meaningful

example: the discretised minimum surface problem over the unit square. We will not be interested

in this problem as such, but rather in showing that one of its discretised formulations exhibits

the type of structure that we want to exploit.

The minimum surface variational problem is well known, and consists in finding the surface of

minimum area that interpolates a given continuous function on the boundary of the unit square.

The unit square itself is discretised uniformly into m
2 smaller squares, as shown in Figure 1.

. . . ..1j 0 (+11j+1 )

---- I L

.(i,j) i, j+1

Figure 1: Discretisation of the unit square

The variables of the problem will be chosen as the "height" of the unknown surface above the

(m + 1)2 vertices of the m2 smaller squares. The area of the surface above the (i, j)-th discretised

square is then approximated by the formula

~~~~~~M Z+,, z+,+)=- 11 + - [(X,, - Zi,+1P~ + (z 14i+1 - i+14)2] (1)

where the squares and variables are indexed as shown in Figure 1. The precise justification of

this formula does not matter here, but we concentrate instead on its form.

The variables in the sets

{(z,,,+: j}=, and (2,.)i=(

=1 i=



correspond to the boundary conditions and are assigned given values, while the others are left

free. The complete problem is then to minimise the objective function

f(z W s j(ti, 22, 2i+j ,+l, zi+ .j+l) (3)

i j=1

over all the free variables i .

A first analysis quickly shows that, using a row-wise ordering of the variables, the Hessian
V

2 f(z) has a block-tridiagonal sparsity pattern with tridiagonal blocks. We note that storing this

matrix, which is typically required in one form or the other in most efficient algorithms, therefore

requires storing O[5(m + 1)21 real numbers. More importantly, this sparsity structure may be

discovered by considering the Hessian of sij as a function of zij, zj+ij, zij+l and zi+lj+i, and

then by assigning !ach of the rows and columns of this dense 4 x 4 matrix to the relevant row

and column of the larger V 2 f(z). If we consider each sij as a function of the complete set of

(m + 1)2 variables, denoted by sij(z), we see that it satisfies the important property that

sij(z) = s,(z + t) (4)

for all vectors to in the invariant subspace

Ni j = {z E R(m+1)2jwij = wij+1 = wi+Ij = wi+lj+1 = 01. (5)

Each sii is therefore invariant with respect to all translations corresponding to vectors of Ni.

From this invariance, it is again easy to deduce that V2 s~j(z) is a (very) sparse matrix, but

we stress the point that (4)-(5) is in fact the most important observation when analysing the

structure of the second derivatives of our model problem. We may then interpret the sparsity

pattern of this last matrix as a consequence of the problem structure: sparsity is easily derived

from the structure, but the reverse is not true.

If we now examine the function sij in more detail, we easily see that, instead of being a

function of the four variables zj, zi+Ij, zij+ and zi+,,i+1, it is, in fact, a function of the two

internal variables

uij L Zii - zi+1j+1 and vij j =zij+l - zi+,,j. (6)

If we write the simple linear transformation

zi,j

uj 10 0 -l x,,j+i (7)

vij1 -1 0 Zi+lj

Zi+l,j+l

we can then reformulate iij in terms of these internal variables as

Ai,(ii, zi+ 2ij +=, h+,+() j ui , Vi) (8)

where the new function Aij (uj, vij) is easily derived from (1) and is given by

Jjid i)= -I
- 2 1 I t,2 . 9

'Vaous obstacle problems can also be obtained by specifying suitable bounds on the variables.
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Computing now the gradient and Hessian of iij with respect to its two arguments, we obtain

that

WTVi,,(Uji, V,,) = Vj( , +j , zIj +, z ++), (10)

where the matrix

0 1 -1 0 '

and also that

wTV 2i,,j(U, ,v,=)W V 2 s8,(zij, Z,+Ij, zj,+, z,+Ij+i), (12)

where sij is again considered as a function of four variables. But the Hessian of jij is now a
2 x 2 symmetric matrix, while that of mij is 4 x 4' Furthermore, we did not index the matrix

W, because the same linear transformation holds for all values of i and j. Storing the second
derivatives of our problem therefore requires storing W once, plus storing the m2 Hessians of

the functions hij, which amounts to O[3(m + 1)2] real numbers. This is a substantial reduction

compared to the O[5(M + 1)2] required by the more classical "sparsity oriented" approach.

In order to abstract from these observations, we simply note that (4) holds not only for the

vectors i in N-', but for all w in
Nij = Nj + Iw E R(m+1) 21wij = w+ij+ and wij+1 = w+ij}. (13)

We can then use all the above remarks to define partially separable functions as follows.

We say that f(z) is partially separable if and only if

1. it can be written as a sum of element functions, that is

P
f (r) AMz, (14)

2. each of these element functions has a nontrivial invariant subspace, that is if, for each

i E 11 .... p), there exists a subspace Ni 9 f0) such that, for every z E R' and w E N,, we

have that

fi(r) = ,z + u). (5)

This definition is not the most general one (see, for example [15]), but has the advantage of

being rather intuitive. As in the minimum surface example above, we will be mostly interested
in the case where the dimension of the invariant subspaces Ni is large compared to the total

dimension of the problem. We may then set up a linear transformation for each element, that

transforms the problem variables {z j =t into internal variables for the element, {uj}"N say as
expressed by the relation

U = Wi. (16)

In our example, this transformation matrix is obtained by compos:ng the four variables at the

comers of the considered discretised square with (11).

Once the transformation from problem variables to internal ones is defined, it is only necessary

to store, compute and/or update the derivatives

Vj,(u) and V'/I(u), (17)



whose dimensions are small.

Moreover, the situation arising in our model example is very common. The transformation
can be separated into the product of two distinct operators: the first selects a (usually small)

number of problem variables that explicitly appear in a given element, and the second defines a

further linear transformation of these selected variables yielding the internal ones. We note that
the first of these operators need not to be expressed in terms of a matrix, but merely in terms

of a list of problem variables associated with the considered element. This saves a substantial

amount of matrix manipulation. As in our example, it also frequently happens that the second
of these transformations, that is from the selected problem variables to the internal ones, is

independent of the element under consideration. Otherwise, frequently there are only a few

different such transformations 2 , which again saves storage and computation.

Since the invariant subspaces are not necessarily spanned by vectors of the canonical basis

(as in our example), we see that the notion of partial separability extends that of sparsity.

More formally, we may state the following result.

Theorem 1 Every twice continuously differentiable function from R n into R having a sparse

Hessian matrix is partially separable.

The reader is referred to [15, section 2] for a more detailed discussion of this basic property.

Finally, it may be worthwhile to note that separable functions, that is functions of the form

pAX=) = zi),

are clearly a very restricted case of partially separable functions. Because the variables xi must

all be different in (18), we prefer to call these functions totally separable.

2.2 Group partial separability

A significant proportion of practical large optimization problems exhibit another very important
structure: the assignment of sets of element functions to groups. The most typical and pervasive
example is probably that of the least-squares problem, where element functions are gathered into
groups which are then squared.

Grouping nonlinear elements into sets is also desirable if we consider solving constrained
problems: it is indeed necessary to distinguish the element functions associated with the objective
from those associated with the constraints.

In order to achieve this grouping, we have to extend the notion of partial separability and
define a slightly more general class. We will say that the real function f(z) is a group partially
separable function if and only if it is of the form

f
f(r) = > 2g(h (z)), (19)

j=1

Ina finite element application, for instance, there ase as many transformations as distinct element types in the

problem.
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where the group functions gi are twice continuously differentiable functions from R into itself,

and where their arguments hi(z) are partially separable functions from R n into R. Expanding

the hi, we obtain the expression

f(z) = - j Z) f(z)) , (20)
j=l E~

where li(a) is the linear part of hj(z), if any: the element functions f1(z) (i E Jj) now contain

the purely nonlinear part of the j-th group.

Our model problem of the previous subsection also exhibits this structure. Indeed, we can

choose the group functions as
(21g ,(y) = 1 , (21)

(where y is called the group variable), the linear part of the groups as

lij(z) = 1 (22)

and the two nonlinear element functions of the (i, j)-th group as

A = -- (Zij - z,+,j+1 )
2 and f2 

2  
- z,+1,1)

2,  (23)

where we used again our double indexing convention for the group indices. In the same spirit as

above, each of these element functions clearly has two elemental variables and only one internal.

An algorithm capable of minirnising group partially separable functions is a very powerful tool,

as it can be applied, without any modification, to nonlinear least-squares problems, constrained

problems (in particular, to their (augmented) Lagrangian formulations) and many other cases.

Such an algorithm, called SBMIN, has been developed by the authors in the context of the

LANCELOT project that is presented below.

Clearly, we can interpret the use of group partial separability as an additional step (compared

to partial separability alone) in the exploitation of the computational tree associated with a given

real function of several variables, and then wonder if one more step could not bring further

advantages. The resulting procedure would then become closer and closer to the exnloitation

of the complete tree, as advocated by McCormick and co-workers in the concept of factorable

functions (see [19], ' instance). A complete discussion of the relative merits of partial vs

complete exploitation of the computational tree associated with a given problem is outside the

scope of the present paper, bnt should, at least, take the following arguments into account.

9 There is a difference between using the complete computational graph [14] for efficient

calculation of various quantities (for example, derivatives) that are requested by a given

algorithm, and using the complete tree in the algorithm itself.

The first approach is used by the new promising automatic differntiation algorithms, as

discussed in [14], while the second raises the question of the possible use of derivatives of
an order higher than two. This very interesting approach has been taken by R. Schnabel

and co-authors (see [22] for an introduction to the subject), but the applications have been

restricted to small problems and specific subsets of the higher derivatives. Whether or not
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this type of techniques can be extended to large problems and complete higher derivatives

(and whether this is desirable) remains an open question: if a Hessian matrix is large, a

third order derivative tensor is huge... but again structure might play an important role

here.

" Storage being a factor of importance for large problems, one has to reach a compromise

between storage needs and efficiency for a given algorithm.

The storage required for an algorithm using group partial separability is of the same order as

that required for a specialised nonlinear least squares solver, and using specialised software

for this last application is widely recommended. This indicates that the balance between

storage and efficiency is reasonably achieved in our context.

" A number of problems involve "black boxes", that is user supplied routines for computing

some problem dependent numerical functions, for which the structure is unknown. Al-

though it may be possible in the future to process these routines using a specially designed
"precompiler" that would extract information about their underlying structure, it is still

necessary for today's algorithms to use these black boxes as they stand. Furthermore, if

these black boxes link some specific subsets of variables together, this property should be

expressed in the structural description of the complete problem. This can be handled very

naturally in the (group) partially separable framework by identifying such black boxes with

element functions.

2.3 Structure and new computer architectures

An important issue in the design of algorithms for large scale problems is their potential use of

advanced computer architecture. The question is already important for small problems (see [22]),

but is even more so for large ones, because the amount of calculation that is purely internal to

the algorithm (therefore excluding problem functions evaluation) rises significantly and may well

become the dominant computational cost.

The exploitation of partial separability and group partial separability on parallel computers

is quite straightforward and efficient (see [17] and [16]). The overall idea is very sinpl-. We note

that the computational tasks in an algorithm using partial separability are of three types:

functions and derivatives evaluations : Because of the partial separable structure, all the

element functions are independent, and their evaluation can be spread over the available

processors in a purely asynchronous manner, an ideal situation in parallel computing.

internal linear algebra t This is one of the areas where the use of parallel computers have been

most studied and for which efficient algorithms are now available. At the k-th iteration of

a typical Newton-type method, partially separable prob'erns give rise to linear systems of

the form

V'f(sA)SA = -Vf(z&),. (24)

From the linear algebra point of view, the structure of such systems is extremely similar

to that of finite element systems, as the coefficient matrix is the sum of element Hessians
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which must ultimately be assembled. Efficient algorithms for this class of problems are well

studied and developed (see (I] and (12 for instance). Both iterative methods (eg. conjugate

gradients variants) or direct algorithms (eg. multifrontal techniques) have been applied to

large scale partially separable optimization problems in this context (see [17] and [6]).

internal element handling and updating : These are the algorithm's inner calculations that

handle the element functions (including the Hessian approximation update for quasi-Newton

methods). Again, these can be shared by the available processors because of the indepen-

dence of these functions.

Of course, if one restricts one's attention to sparsity of the Hessian matrix, important speedups

can still be achieved in internal linear algebra, as discussed above, but parallelisation of the two

other types of computational tasks is then more difficult.

As a conclusion, we may say that the use of partial and group partial separability facilitates

the algorithms to use the potentialities of parallel computers, providing a natural problem de-

composition, which then results in an efficient partitioning of the computational work amongst

the processors.

2.4 The sources of (group) partially separable problems

One of the major sources of (group) partially separable is the discretisation of continuous prob-

lems. Both finite differences and finite elements approximations result in problems of this type,

mostly because of the "locality" of the involved operators, that only relate variables correspond-

ing to "neighbouring" discretisation points. An interesting collection of such problems has been

recently gathered by J. Mor6 in (20]. This collection features, amongst others, chemical engineer-

ing applications, variational inequalities, biomedical modelling, boundary value problems and

elasticity analysis.

Nonlinear network problems form another important source of group partially separable prob-

lems, ranging from urban traffic equilibria (see [13] for a excellent survey of this type of appli-

cations) to water and gas resource management [21]. The structure again results from the same

"locality" property that we mentioned for discretised problems: nonlinear variables explicitly in-

teract when they are close to each other in the considered network (they are typically associated

to arcs incident to a given node, or to nodes at the extremities of a given arcs).

Other classes of problems that often exhibiting partially and/or group partially separable

structure include

" multiperiod planning models,

" input-output macro-economic models,

" multiobjcctive optimization,

" nonlinear matrix equations.

It seems therefore fair to say that (group) partially separable problems actually occur in most

fields where large scale nonlinear optimization is itself relevant. This is not surprising if one
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recalls Theorem 1, but it is worthwhile to note that the decomposition (14) or (19) often arises

very naturally in the problem formulation, its description therefore requiring a minimal amount

of additional effort.

3 The LANCELOT software project

The LANCELOT software project was started by the authors more than two years ago. The

meaning of the LANCELOT acronym is explained by the banner displayed in Figure 2.

LANCE LOT -

a n o o x a p •

r d n n t tc
g Is e r i h

e t n a mn

n r d n i i
e a e g z q
a i d i a u
r n a t e

e n i S

d 0

n

Figure 2: The LANCELOT banner

According to this banner, LANCELOT 's purpose is to attack large problems involving non-

linear objectives and/or constraints by using techniques based on the Lagrangian functions.

The main characteristics of the LANCELOT software can be described as follows.

Use of problem structure: As discussed in thai first part of the paper, the use of problem

structure is the only reasonable way to tackle large problems. For the reasons explained
above, (group) partial separability seems the right concept to invoke for this purpose:

LANCELOT will therefore explicitly handle these types of structure.

On the other hand, this capacity to exploit structure will inevitably result is some in-
eflciency when handling unstructured problem. Care will be taken to ensure that this

inefficiency is not too severe.

Efficiency and reliability: LANCELOT will be efficient and reliable. At the beginning of a

software project, such a statement is of course a little preposterous. What is meant is

that the algorithm design and implementation will systernatically use efficient and reliable

structures and methods.
"The a* at the end of "techniques" is intentional: the present pilot version of the software already uses two

different exytensions or augmentations of th, Igrtangian.
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An important point is that strong emphasis is put on the theoretical justification of the

algorithms and structures used by the software. Suitable convergence theory should be
available (and, in part, already is: see [3], [5], [7], [11]). Furthermore, the final implemen-

tations and the studied algorithms should differ as little as possible. This requirement of a
well established supporting theory is not considered as a sufficient condition guaranteeing

software reliability, but as truly necessary.

This theoretical support will be completed by intensive testing on model problems, both

practical and more academic. The first ones are crucial because they reflect best the

situation in which the software will be applied. The second ones are important too because

they introduce sometimes extreme numerical difficulties: the performance of the system

when faced with these difficulties is easier to isolate and to improve on such idealised

problems (see [4] and [6] for preliminary tests).

Of course, the final efficiency and reliability achieved is best judged by the end-users!

Scope: The domain of application of the LANCELOT system will include a large part of smooth

nonlinear optimization problems. Although primarily focussed on large scale problems,
LANCELOT will also cover small and medium size ones. It will exploit specific types of

constraints, including

* none (unconstrained problems),

* simple bounds on the problem's variables,

" linear network-type constraints,

" general linear constraints,

" convex constraints, where the feasible domain is such that a (possibly approximate)

projection can be efficiently computed,

" general nonlinear nonconvex constraints.

Extension to nonsmooth problems is of interest, but is not planned at this stage. The

emphasis will be on nonlinear problems: LANCELOT is not presently intended to compete

with large linear programming packages.

Ease of use: Inputting problems to LANCELOT will be reasonably easy. A standard input

format for nonlinear problems (SDIF) has been proposed by the authors to achieve this

objective. It features a number of facilities to describe problem structure, along the lines

analysed in Section 3 of this paper. For instancee, it automatically handles multi-indexed

variaLles as they natirally arise from discretizations of multi-dimensional problems (as the

minimum surface example presented above). This format has been formalised in [8] and has

already been used for the input of a fairly siseable set of large problems. Although not as

complete as a true modelling language, it nevertheless provides an important practical help

in specifying structured problems, as well as invaluable internal data consistency checks.
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It is the authors' experience that large structured nonlinear problems arising from applica-

tions4 have been fully specified using the SDIF, validated and solved by the pilot version

of LANCELOT , the whole process taking less than one hour (which we consider quite

reasonable).

Adaptability. The LANCELOT system is also designed in a very modular and hierarchical way
which, in turn, provides a good adaptability of the system to extensions, both algorithmic

and implementation oriented.

This organisation is also made necessary by the need to provide more than one methodology

for some of the algorithmic parts of the system: preconditioning the large linear systems

arising from Newton's equation requires, for example, that several strategies (simple diag-

onal scaling, incomplete factorisation, modified band techniques, ... ) be available to the

user.

The adaptability of the LANCELOT software is also enhanced by the choice of a reverse

communication interface for the system.

Portability: Because the LANCELOT system is designed to be easily portable, the programming

language most commonly used for scientific applications, Fortran 77, has been chosen for

its development. Strict conformity with the standard of the language is enforced at all

levels of the system. Transfer between different machines (CRAY, IBM, DEC and SUN

mainframes and workstations, ... ) and operating systems (VM/CMS, VMS, UNIX, ... )

also takes place during the development phases, in order to ensure maximal portability, not

only of the end-product, but also of the successive pilot codes.

Following the arguments of Section 2.3, the code is also designed in a way that has the
potential to make it efficient on parallel and/or vector computers.

4 Conclusions

We have shown how the structure of large complex nonlinear problems can be analysed using the

concept of (group) partial separability. We have also discussed some aspects of the LANCELOT

project, whose purpose is the implementation of this approach in a practical software tool.

Development of the LANCELOT system is ongoing, both from the theoretical and software

viewpoints. As alluded to above, some layers and functionalities of the system are already

operational and being tested. Detailed numerical experiments with these modules will sho-tly be

reported elsewhere.

The coherence of theoretical concepts with their applications to "real world" problems and

the coherence of the theoretical concepts between themselves are considered by the authors to

be of cen'ral importance. An approach to large scale nonlinear programming that hai this type

of coherency has been outlined in this paper, ranging from abstract convergence theory and
4The examples we have in mind here were proposed by practitioners in the fields of energy modelling and finite

element applications. They involve more that 1000 nonlinear variables and some of them have nonlinear constraintp,.
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structure analysis to practical software implementations. In a domain just reaching maturity,

this unified perspective is desirable.
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Abstract

This paper explores the use of adaptive polynomial preconditioning for hermitian posi-
tive definite linear systens, Ax = b. Such preconditioners are easy to employ and well-suited
to vector and/or parallel machines. After examining the role of polynomial preconditioning
in conjugate gradient methods, we discuss the least squares and Chebyshev precondition-
ing polynomials. We determine those eigenvalue distributions for which each is well-suited.
We also describe an adaptive procedure for dynamically computing the optimum Cheby-
shev polynomial preconditioner. Finally, in a variety of numerical experiments on a Cray
X-MP/48 and Alliant FX/8, we demonstrate the effectiveness of adaptive polynomial pre-
conditioning. Our results suggest that relatively low degree (2-16) polynomials are usually
best.
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1. Introduction. This paper examines polynomial preconditioning for hermitian
positive definite (hpd) linear systems of equations, Ax = b. Such systems arise in many scientific
applications. For example, the matrix resulting from the 7-point finite difference approximation
to a three-dimensional self-adjoint elliptic PDE is large, sparse, and hpd. The conjugate gradient

(CG) method of Hestenes and Stiefel [19] is a popular and effective solution technique for these
linear systems, especially when combined with a preconditioner. The incomplete Cholesky
(IC) factorization of Meijerink and van der Vorst [23] is often an effective preconditioner for
CG, but other choices include Jacobi and SSOR. In this paper, we will consider polynomial
preconditioning for conjugate gradient methods. That is, we will solve

C(A)Az = C(A)b (1.1)

where C(A) is a preconditioning polynomial and C(A) is the associated polynomial precondi-
tioner. We will assume that C(A) has real coefficients, in which case both C(A) and C(A)A
are hermitian.

Polynomial preconditioning has several advantages. First, it is simple: there are only two
intrinsic operations, matrix-vector multiplication (matvec) and vector addition (sazpy). The
user need only specify the polynomial degree and initialize a few parameters; the preconditioning
may be implemented automatically. Since polynomial preconditioning requires only matrix-
vector multiplication, it is ideally suited to "matrix-free" computations [6].

Polynomial preconditioning is also versatile. As discussed in [3], polynomial preconditioners
may be used in variety of CG methods. The best-known of these is the PCG method of
Concus, Golub, and O'Leary [11]. However, one may exploit the special properties of polynomial
preconditioners to devise new CG methods [4]. The key to this versatility is commutativity: a
polynomial in A commutes with A. In other words, the preconditioner C commutes with the
matrix A, a property generally not shared by other preconditioners.

The main advantage of polynomial preconditioning is its suitability for vector and/or par-
allel architectures. If the matvec is vectorizable, as when A has a regular sparsity structure,
polynomial preconditioning is effective on vector machines; see [3, 12, 21, 22]. In contrast,
incomplete factorizations are difficult to vectorize, especially for the nonexpert. It is also pos-
sible to chain the matvecs (implicit in the preconditioning), thereby enhancing data locality
and reducing memory traffic; see [9, 10, 27, 28]. Polynomial preconditioning is also effective on
parallel machines, especially those on which inner products are a bottleneck. This is so because
polynomial preconditioned CG methods converge in fewer steps than unpreconditioned CG, and
thus compute fewer inner products, albeit at the cost of several matvt.s per step instead of one.

However, in many applications the matvec is parallelizable, and so we can expect an overall

reduction in CPU time on some architectures by substituting matvecs for inner products. The
effectiveness of polynomial preconditioning has been demonstrated on an Alliant FX/8 [24] and
on a Connection Machine [7].

A common complaint about polynomial preconditioning is that, unlike incomplete Cholesky,
it is only marginally better than unpreconditioned CG, which we will call CGHS. This criticism
is misguided because it is based on the number of iterations required -;or convergence, rather
than the CPU time. Although ICCG may take fewer iterations than PPCG, the latter often
takes less time [12, 22]. Moreover, even when incomplete Cholesky is more effective, it can be
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further accelerated by using a polynomial preconditioner. Specifically, one applies CG to

C(M-'A)M-'Ax = C(M-A)M-'b (1.2)

where M is the matrix representation of the incomplete factorization. Notice that if M and A

are hermitian, then so is the preconditioner C(M-A)M-. Several CG methods are applicable

under these conditions [1, 2, 4].
We emphasize that polynomial preconditioning is most effective on parallel machines, where

it typically outperforms incomplete Cholesky. Moreover, since polynomial preconditioning can
be implemented automatically, it is as easy to use as CGHS. Thus, any improvement over CGHS

is obtained essentially for free.

1.1. Outline of Paper. In the next section we review preconditioned CG methods.
After presenting two implementations of a CG method, we discuss the various ways in which

a polynomial preconditioner can be used. In § 3 we examine polynomial preconditioning. In

particular, we discuss the least squares and Chebyshev preconditioning polynomials, study them
:n the context of CG methods, and show that the latter minimizes a bound on the condition

number of the preconditioned matrix. We compare the two polynomials in § 4. In a variety
of numerical experiments we determine those eigenvalue distributions for which each is well-
suited. In § 5 we describe an adaptive procedure for dynamically computing A, and Ad, the

smallest and largest eigenvalues of our hpd matrix A. These extreme eigenvalues are needed
to determine the best Chebyshev polynomial preconditioner for many eigenvalue distributions.

We also present numerical results demonstrating the accuracy and efficiency of the adaptive
procedure. Finally, in § 6, we summarize some numerical experiments which demonstrate the

effectiveness of polynomial preconditioning on a variety of test problems. Our results suggest
that relatively low degree (2-16) polynomials are usually best.

2. Preconditioned CG Methods. In this section we examine the use of
polynomial preconditioners in CG methods. To do this it is useful to first characterize CG
methods. The discussion below is culled from [3] and 141.

In [4] it is shown that any CG method is characterized by three matrices: an hpd inner

product matrix B, a left preconditioning matrix C, and the original system matrix A. The
resulting CG method, CG(B, C, A), minimizes lleiljB = (Bei, ei)i over VI(CA, Cr0), where

V(CA,Cro) = span{Cro, (CA)Cro, (CA)2Cro,..., (CA)'-'Cro) (2.1)

is a Krylov subspace of dimension at most i, e, is the error in the current iterate, ro is t-2

initial residual, and (.,.) denotes the usual Euclidean inner product. By specifying the it~ner

product matrix B, we obtain a particular CG method. For example, when A is hpd, one may
take B = A and C = I, which yields CGHS, the original method of Hestenes and Stiefel. If one
takes B = A2 and C = I, the conjugate residual (CR) method results.

The most robust implementation of a CG method is the so-called Odir algoi'thm [30]:

pa - Cro (2.2)
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(Bepp) 
(2.3)(Bpi,p,)

z,+i = zi + aipi (24)
rj+j = ri- aiApi (2.5)

7i = (BCAp,p) (2.6)
'V = (Bp,,p,) (2.7)

(Bpi-j,pi-j)

Pj+j = CApi - 7 iP - aipi-1 (2.8)

where zi is the current iterate, ri = b- Azi is its residual, and p is the current direction vector.
This algorithm converges to the solution of Ax = b whenever BCA is hermitian. (For necessary
and sufficient conditions, see [4, 13].) Since the error ej is unknown, B must be chosen so
that ai is computable. For example, B = A and B = A2 yield computable CG methods. One
can also express ai in terms of C, which allows greater flexibility in designing computable CG
methods. Specifically, a CG method is computable whenever C*Bei is computable [4].

When BCA is hpd, the cheaper and more familiar Omin algorithm t301 will converge:

so = Cro (2.9)

Po = s 0  (2.10)
(Be,,s,) (2.11)

a, (Bpip)(
Xi+1 = zi + aipi (2.12)

rj+l = ri - aApi (2.13)
fi =  (Be~i+,s+1 ) (2.14)

(Beis,)
sj+j = Cr+1  (2.15)
Pi+1 = 8i+1 +Api. (2.16)

Whereas Odir uses a 3-term recursion involving CAp to generate the new direction vector Pi+i,
Omin uses a 2-term recursion involving the preconditioned residual, si+. Unfortunately, Omin
may "stall" when BCA is indefinite, in which case the more expensive Odir, or an Odir/Omin
hybrid, algorithm should be used [4, 8].

When A is hpd and C = C(A), there are several choices for the inner product matrix B.

A few of the resulting CG methods are listed in Table 2.1. Notice that BCA is hermitian in
all cases, and so Odir converges. The Odir restrictions in Table 2.1 are sufficient to insure that
B is hpd. The Omin restrictions are sufficient to guarantee that both B and BCA are hpd.
The first method is PCG. Like CGHS, it minimizes the A-norm of the error, but does so over

a preconditioned Krylov subspace. Although the matrix A must be hpd to define a norm, the
preconditioner C(A) only needs to be hermitian for Odir. If C(A) is hpd, one may use the

more efficient Omin algorithm. The method GCGHS, which is CGHS on CA, minimizes in the
B = C(A)A norm, and so C(A) must be chosen so that the preconditioned matrix is hpd. As we
will see, this is possible. The advantage of GCGHS is this: if C(A) is a good preconditioner, then

C(A)A n I, and so the method more nearly minimizes the Euclidean norm of the error. The
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Method B ] CA I Odir Restrictions Orin Restrictions

PCG A C(A)A A hpd A hpd, C(A) hpd
GCGES C(A)A C(A)A C(A)A hpd C(A)A hpd
PCR A.A C(A)A C(A) hpd A hpd, C(A) hpd
PPCR A C(A)A none C(A)A hpd
GCR (C(A)A) C(A)A none CA)A hpd

Table 2.1: Polynomial Preconditioned CG Methods for HPD A

next method, PCR, requires that C(A) be hpd, in which case C(*)A is hpd because A is hpd.
The last two methods, PPCR. and GCR, employ B = A2 and B = (C(A)A) 2 , respectively. The
Odir algorithm will converge for either method; Omin is applicable if C(A)A is hpd. Note that
PPCR is possible because CA = AC (which implies that BCA is hermitian), an advantage of
C being a polynomial in A. The last method, GCR, is simply CPt applied to the preconditioned
matrix, CA. We remark that each method except PCG is applicable to hermitian indefinite A;
see [5]

Finally, we note that the spectral and B condition numbers of CA are identical for each of
the methods in Table 2.1. That is, KI(CA) = KB(CA), where KB(CA) = 1jCAIlBaI(CA)-111B.
Thus, estimates for the extreme eigenvalues of CA yield a bound on rtj(CA), which may be used
to implement a stopping criterion based on the true error, rather than the more usual residual
error. Eigenvalue estimates for CA are easily obtained from the CG iteration parameters [4, 11].
This is also the basis for the adaptive procedure discussed in § 5.

3. Polynomial Preconditioning. In this section we examine several choices
for C(,\). We wish to choose C to accelerate convergence of the CG iteration. One usually
chooses C to approximate A- 1 in some sense, for example, by choosing C(,\) s- '0. Of course,
there are several ways of doing this. As we will see, there is no single "best" polynomial; the
proper choice of C(,\) depends on the eigenvalue distribution of A, which is seldom known a
priori.

A simple choice for C(A) is based on the Neumann series. Let A = M - N and consider

A- ' = (M - N) - ' = (I + G+ G 2 + G3 +...)M-1 (3.1)

where G = M-IN. If the spectral radius of G is less than one, the series converges. We obtain

our polynomial approximation to A- ' by truncating the Neumann series [2, 7, 12, 221. The
advantage of this polynomial is its simplicity: there are no parameters to estimate. Unfortu-
nately, it may yield a poor preconditioner. If one desires a polynomial preconditioner of degree
m - 1, one can do much better than the Neumann series polynomial. For example, Jordan [22]

has shown that the Chebyshev polynomial (§ 3.2) is superior. Experiments also suggest that
the optimum degree for the Neumann series polynomial is two [2, 12, 22], whereas the optimum

Chebyshev or least squares polynomial degree is often higher [3, 24, 27].
To obtain a better preconditioner, recall that C(A) should approximate A-' in some sense.

That is, C(A) should be the "best" polynomial approximation to A- on some set S containing
the spectrum of A, o(A). Since A is hpd, we will take S = [c,d], where 0 ! c ! d. Ideally,

c = A, and d f Ad, the smallest and largest eigenvalues of A. We next define the "best"
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P.,)

C d

Figure 3.1: Least squares preconditioned polynomial (m = 5) for S = [0, 201

polynomial to be that one which solves the following approximation problem:

min III - C(A)AII (3.2)CEW_-1

where rm I is the set of polynomials of degree at most m - 1. All that remains is to specify
the norm.

3.1. The Least Squares Polynomial Preconditioner. Let us define the inner prod-
uct (f,g) = 1(C )-)w()dA (3.3)

where w(A) is a positive weight function on S = [c,d]. It induces the following norm:

IlfII2, = jd If( )12w( )dA. (3.4)

The solution to (3.2) in this norm is called the weighted least squares polynomial. The associated
preconditioned polynomial, p,(,\) = C(A)A, is illustrated in Figure 3.1. (We call p,(A) the
preconditioned polynomial because p(A) is the preconditioned matrix.) Since the related
residual polynomials, r, = 1 - C(,k),, are orthogonal with respect to the weight function
Aw(A), the least squares polynomial may be computed via a three-term recursion, which is
cnmputationaUy stable and efficient. See also [21, 27].

Unlike the Chebyshev polynomial described below, the least squares polynomial is biased
in its suppression of the eigenvalues of A. For example, when w a 1, the eigenvalues of larger
modulus are mapped closer to 1 than those of smaller modulus. If the eigenvalue distribution
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of A were known, one could choose w to exploit this bias. In particular, one might consider a
Jacobi weight function,

w(A) = (d - A)'(A - c)O, a, 3 > -1. (3.5)

By appropriately choosing a and 8, one pOrtion of a(A) could be emphasized over another.
One should choose the weight function w so that p,,(A) = C(A)A is positive on [AC, Ad].

This guarantees that p (A) is hpd, which makes practicable the Omin implementation of each
method in Table 2.1. (Note that PCG and PCR are applicable because C(A) is hpd whenever
pm(A) = C(A)A is hpd.) If one employs a Jacobi weight function on [c,d], one may show [29,
page 166] that p,.(A) > 0 on [c,d] if (a,#) E Wi = (a,l) : a 2! -1/2, / _ -1/2}, which
includes the Legendre weight function w E1 (a =/8 = 0).

Saad [27] has noted that the least squares polynomial is relatively insensitive to c, and so
one may take c = 0. Then, if a Jacobi weight function is used, the least squares polynomial is
given by a scaled and translated Jacobi polynomial corresponding to a and /3 + 1. Moreover,
if (a,/3) E W 2 = {(a, 0) : -1 < a < -1/2, p > -1), the relative extrema of the least squares
polynomial decrease in magnitude on S [29]. This property, which is in stark contrast to the
equioscillation property of the Chebyshev preconditioned polynomial (see below), may be used
to bias the preconditioner toward the large eigenvalues of A. This property also insures that

p,(A) is positive on (0,d], which is important in many of the CG methods discussed in § 2.
Despite its bias, the least squares polynomial yields an effective preconditioner in many

cases [21, 27]. Since one may take c = 0, there is no need to estimate the smallest eigenvalue
of A. The right endpoint is usually taken to be the Gershgorin estimate for Ad. We discuss a
more sophisticated adaptive procedure for dynamically estimating A and Ad in § 5.

3.2. The Chebyshev Polynomial Preconditioner. Another interesting norm is the
uniform norm:

11f 11. max If(A)I. (3.6)AES

The solution to (3.2) in this norm is obtained from a shifted and scaled Chebyshev polynomial:

C(A)A = T ) (3.7)

where Tin(z) is the mrA' Chebyshev polynomial of the first kind [25]. Notice that C(A) is indeed
a polynomial in A. It is attractive for several reasons. First, like the least squares polynomial,
it may be computed from a three-term recursion, which is computationally convenient. Second,
since this polynomial is explicitly known, it is much easier to devise an adaptive procedure for
dynamically computing the optimal endpoints c and d. Finally, this polynomial is unbiased

in its suppression of those eigenvectors constituting the error. In other words, the Chebyshev
preconditioning polynomial is well-suited to those matrices whose eigenvalues are densely and
nearly uniformly distributed throughout the interval S = [c,d]. See § 4.

This last fact follows from the Chebyshev minimax property, which states that the precon-
ditioned polynomial, p (A) = C(A)A, equoscillates about 1; see Figure 3.2. This equioscilla-
tion property has several other implications. For example, if o(A) C [c,d], then a(p,(A)) C

[1- (m, 1 + c,], where c. III - p jn IT,(f)]. Since cm < 1, the preconditioned matrix,
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pC(d
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Figure 3.2: Chebyshev preconditioned polynomial (m = 5) for S = (1, 20]

pm(A), is hpd. One may therefore apply CGHS top (A), yielding the method we call GCGHS.
PCG is also applicable because C(A) is hpd. Note that the spectral condition number of pM(A),
r(p (A)), satisfies

(p(A)) 1 + (3.8)
1 - C

when a(A) C [c, d]. Since c, is a monotonically decreasing function of m, this bound may be
made as small as desired by taking m large enough. Specifically, if

cosh-'( _) (

then (pm(A)) < 6 for any 6 > 1. This follows from the definition of Tm(A) for A > 1.

The bound (3.8) yields an estimate of the number of CG steps required for convergence.
One needs approximately

ln(6/2) (3.10)
ln(cf)

steps to reduce the error by an amount 6 [18], where

cf = cf(p. (A)) = 1(3.11)

is the CG convergence factor for the hpd matrix po(A). If the eigenvalues of p (A) are uni-
formly distributed throughout [I - em, I + E], then (3.10) is fairly accurate. Since (p.(A)) 5
r.(A) for m > 1, a Chebyshev polynomial preconditioned CG method will usually converge in

fewer iterations than the unpreconditioned CGHS method. Of course, each iteration is more
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expensive, requiring m matvecs instead of one. We remark that (pm(A)) is minimized when
c = A, and d = Ad.

The Chebyshev polynomial preconditioner is also optimum in that it minimizes a bound on
K(C(A)A). This is a consequence of the following

Theorem 3.1. A solution to
max \s IC(A)A(nun (3.12)

is given by the Chebyshev preconditioning polynomial.

Proof: First observe that (3.12) does not possess a unique solution. In particular, if Q solves
(3.12), then so does 7yQ, where 7 is any nonzero constant. We may assume C(A)A > 0 for A E S
without loss of generality. (If C()' 0 for some A E S, then (3.12) is unbounded.) Thus, we

may restrict ourselves to those poL .ojmials C(A) for which

1 - min (C(A)A) = max(C(A)A) - 1 = c(C) = c. (3.13)
XES AES

The problem (3.12) is now equivalent to minimizing 4L4_. This is, in turn, equivalent to solving
(3.2) in the uniform norm. N

Remark: If p,, is the Chebyshev preconditioned polynomial for S and a(A) C S, the ratio in
(3.12) gives a bound on the condition number of pm.(A). Moreover, this bound is minimized
with respect to S when S = [A, Ad].

This theorem is similar to Theorem 3 in [21], but our proof is different. It shows the equiv-
alence of the minimax approximation problem (3.2) and the minimization problem (3.12). We
also remark that Rutishauser [26] was the first to propose Chebyshev polynomial precondi-
tioning for CGHS; his motive was to mitigate its rounding errors. We advocate polynomial
preconditioning because it is well-suited to vector and/or parallel architectures.

3.3. Implementation. To implement least squares or Chebyshev polynomial precondi-
tioning, one neither explicitly forms the powers of A nor determines the coefficients of C(A).
Instead, one executes m steps of a nonstationary 2-step iteration. (In the case of Chebyshev

polynomial preconditioning, one uses the Chebyshev iteration [18].) Specifically, one applies
the 2-step iteration to the linear system Aw = v with o = 0, where v is the vector to be
preconditioned, usually the residual. One may show that w.. = C(A)v. Note that we need only
m - I matrix-vector multiplications because the final residual need not be computed. We also
remark that the three-term recursion underlying the least squares and Chebyshev polynomials
insures the stable evaluation of the preconditioning polynomial C(A). See also [21, 27].

4. Chebyshev versus Least Squares. In this section we compare the least
squares and Chebyshev preconditioning polynomials in a variety of numerical experiments. We
wil: qualitatively describe those matrices for which the least squares polynomial yields a better
preconditioner than the optimal Chebyshev preconditioner. Moreover, we will explain why this
is so. The importance of the stopping criterion will also be discussed.

Let us begin by dispelling a common misconception: the least squares polynomial is not
universally superior to the optimal Chebyshev polynomial. (The optimal Chebyshev polynomial

519



is the one based on [A,, Ad]. Recall tiat it yields an optimum preconditioner in the sense of
Theorem 3.1.) This follows from a result of Greenbaum [17], who established a partial ordering
on preconditioners. In brief, her result implies that the least squares preconditioner cannot be
best for every initial guess, zo. However, it is better in certain cases. For although the optimal
Chebyshev polynomial minimizes the condition number of p.(A), this does not alone determine
the rate of convergence of the preconditioned CG method. The eigenvalue distribution of p, (A)
is also important. Because of its equioscillation property, the Chebyshev polynomial tends to
map [c, d] uniformly into [1 - E,,, 1 + (,n], obliterating any favorable clustering of the eigenvalues
of A. The unweighted least squares polynomial (w = 1) tends to map the larger eigenvalues of A
most closely about 1, giving less weight to the smaller eigenvalues. This is due to the tendency
of its relative extrema to decrease in magnitude on S. (This property can be made strict by an
appropriate choice of weight function; see § 3.1.) Thus, if there are relatively few eigenvalues of
A near c, these will become isolated eigenvalues of the least squares preconditioned matrix, the
majority of whose eigenvalues will be clustered about 1. On the other hand, if the eigenvalues
of A are dense near c, there will be no such clustering of eigenvalues. The proper choice
of polynomial therefore depends on the spectrum of A. We will now explore this question
numerically.

In the experiments below, the test matrices are diagonal with N = 100,000 eigenvalues
between A, = 6 and Ad = 1+b. The true solution is the vector having 1 in each of its components
and zo = 0. Three eigenvalue distributions are considered. In the first, Ak = b + 1 - I/k,
k = 2,. .. ,N - 1, and so the eigenvalues are dense near the right endpoint d. In the second,
Ak = b + 1/(N - k + 1), and so the eigenvalues are dense near the left endpoint c. In the
third, the eigenvalues are uniformly distributed. In Figures 4.1-4.4, we plot the PCG relative
error, 1og10(Ile ,12/1ieoji2), against i for three polynomials of degree m = 9. The first is a least
squares polynomial (with Legendre weight w _ 1) based on [0,1 + 6]; the second is the optimal
Chebyshev polynomial based on [6, 1 + 6]; and the third is a Chebyshev polynomial based on
[(, I +6], where C is chosen so the related least squares and Chebyshev residual polynomials have
the same first root. By choosing C in such a manner, we force this LS-Chebyshev polynomial
to mimic the behavior of the least squares polynomial in (0,C), and so the two polynomials
behave alike.

In Figure 4.1, we have the dense-right eigenvalue distribution with 6 - 10- 3 . Since the
least squares polynomial is small on the large eigenvalues of A, the least squares PCG method
converges much more rapidly than the optimal Chebyshev PCG method. In Figure 4.2, the
egenvalues are dense near the left endpoint, and the optimal Chebyshev PCG method converges
faster. Similar results were observed for other values of 1. In Figures 4.3-4.4, we have the
uniform eigenvalue distribution. When 6 = 10- 3 , the gap between successive eigenvalues is I/N,
which is smaller than A,, and the optimal Chebyshev PCG method converges fastest. However,
if 6 = 10- , the gap between successive eigenvalues is larger than A, and the least squares
PCG method converges faster. We have seen similar behavior in several other experiments. In
short, the optimal Chebyshev polynomial appears to be superior to the least squares polynomial
when the gap between successive eigenvalues is small relative to the size of Ac. The optimal
Chebyshev polynomial is also superior to the least squares polynomial when the eigenvalues of
A are dense near both endpoints of S or throughout S. In the latter case, for instance, if we
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Figure 4.1: Dense-Right Eigenvalue Distribution; 6 = 10
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fix 6 10
-3 and increase N, the optimal Chebyshev polynomial performs best for large N.

As claimed, the LS-Chebyshev polynomial behaves like the least squares polynomial and,
depending on the eigenvalue distribution of A, may be superior to the optimal Chebyshev

polynomial. For example, if the eigenvalues of A are sparse near c and dense near d (recall
Figure 4.1), the LS-Chebyshev PCG method will usually converge in fewer iterations than the
optimal Chebyshev PCG method. The explanation is similar to that for the superiority of the

least squares polynomial: The LS-Chebyshev polynomial maps those eigenvalues in [(, d] more
tightly about 1 than does the optimal Chebyshev polynomial. Of course, those eigenvalues
in [c, () are mapped further away from one. However, there are relatively few eigenvalues in
[c, (); moreover, they become isolated eigenvalues of C(A)A. It is well-known that CC rapidly
damps the error in the direction of the corresponding eigenvectors. After doing this, it is able
to focus its effort on the dense part of the spectrum where the LS-Chebyshev polynomial does

a better job of clustering the eigenvalues about 1. Since one seldom knows how the eigenvalues
of A are distributed, one must rely on an adaptive procedure to find the optimum S. If one
knew the eigenvalue distribution of A, an appropriately weighted Chebyshev or least squares
polynomial could be used to achieve faster convergence. Freund [14] has recently proposed
using the Lanczos eigenvalue estimates to obtain such a weight function, and his results are
promising. In particular, he has shown that the resulting preconditioned CG method often

converges faster than the method based on the optimal Chebyshev polynomial. Unfortunately,
there is no guarantee that the preconditioned matrix will be hpd for all S, and this can make
difficult or impossible the robust implementation of some adaptive CG algorithms.

Finally, we note that the choice of stopping criterion can also affect the choice of polynomial.
Since the least squares polynomial is small on the large eigenvalues of A, it is biased toward
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this part of the spectrum. Those eigenvectors associated with the large eigenvalues of A are
consequently damped the most. If one bases the stopping criterion on the relative residual,
the eigenvectors corresponding to these large eigenvalues are given greater weight. Thus, this

stopping criterion is ideally suited to the least squares polynomial. The optimal Chebyshev
polynomial, on the other hand, is well-suited for use in stopping criteria based on the true
error. (Although the true error is unknown, it can be bounded [4].) The difference between
these stopping criteria can be as large as XB(A).

4.1. The Need for an Adaptive Procedure. Recall that the weighted least squares
and uniform norms are defined with respect to the positive interval S, which we have assumed
contains the spectrum of A. That is, we have assumed that the smallest and largest eigenvalues

of A, X, and XI, are given. Unfortunately, this is seldom true. In the case of the least squares
polynomial, one may avoid this difficulty by choosing c and d to be the Gershgorin estimates
for ,k and Ad. In particular, one may take c = 0. The resulting preconditioner is often effective,
but there are eigenvalue distributions for which the optimal Chebyshev polynomial is better.

Here one needs accurate estimates for the extreme eigenvalues of A. Although this might
be viewed as a reason for using the Neumann series or least squares polynomial, it is not.
As we will see, one may dynamically estimate , and ,d from the CG iteration parameters.
This is equivalent to dynamically determining the optimum polynomial preconditioner (in the
sense of Theorem 3.1). The resulting adaptive polynomial preconditioned CG algorithm works
remarkably well in practice: it quickly and accurately determines , and Ad. We describe this
idea in the next section.
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5. Adaptive CG Algorithms. In this section we discuss adaptive CG algo-
rithms. In such an algorithm we apply a given CG method to the preconditioned linear system

C(A)Az = C(A)b, where C(A) is the current preconditioning polynomial. Information about
the spectrum of A is extracted from the CG iteration parameters and used to obtain a bet-
ter preconditioner, e(A). If this new preconditioner is sufficiently better than C(A), the CG

method is restarted with C; otherwise, the current iteration resumes with C. In this way the
adaptive CG algorithm dynamically determines the optimum polynomial preconditioner for A.

Determining this optimum preconditioner is equivalent to determining the smallest set S =
[c,d] that contains cr(A), the spectrum of A. Ideally, S = E(A) = [A,,Ad], the convex hull of
a(A). This yields the optimum Chebyshev preconditioned polynomial, p., which minimizes the
bound on K(pm(A)) obtained from (3.12). However, the extreme eigenvalues of A are seldom
known a priori, and so S is only an approximation to E(A). The development of an adaptive
procedure for dynamically improving this approximation is the subject of this section, which is
taken from [3].

Although we will consider only the Chebyshev polynomial, a similar procedure could be used
with the least squares polynomial to extract egenvalue estimates from the CG iteration. How-
ever, this is unnecessary since the least squares polynomial is insensitive to its inner endpoint.

One may take c = 0 and choose d to be the Gershgorin estimate for Ad. See [27].

5.1. Description of the Adaptive Procedure. Given an interval S that approximates
E(A), and a Chebyshev preconditioning polynomial C(A) based on S, a CG method is applied

to C(A)Az = C(A)b. After a prescribed number of steps, say 1, the adaptive procedure is
called:

(1) Compute eigenvalue estimates for pr,(A) = C(A)A.

(2) Extract eigenvalue estimates for A and update S.

(3) Determine the new preconditioning polynomial, C(A).
(4) Resume or restart the CG iteration, whichever is appropriate.

After another I CG steps, the adaptive procedure is called again, and so on until convergence.
Eigenvalue estimates for p,,(A) are easily obtained from the CG iteration parameters by

exploiting the equivalence of the CG and Lanczos algorithms [4, 11, 16]. (See [15] for an
alternative.) As we will see, it is then easy to recover eigenvalue estimates for A when the

degree m of the polynomial is odd. Once we have these estimates, we can expand S and
determine the new Chebyshev preconditioning polynomial. If this polynomial is "much" better

than the current polynomial (§ 5.2), the CG iteration is restarted. By this we mean that the
current iteration is abandoned and the CG method is applied to C(A)Az = C(A)b. The new
initial guess is the last iterate of the previous iteration or some linear combination of past

iterates.

To elucidate, suppose we are executing a CG iteration. Let S be the current approximation
to E(A) and let

p'.(A) = C(A)A = 1(5

be the current Chebyshev preconditioned polynomial. Note that the image of S under Pm is

J= [1 - e,1 + 4J, where c = T;l( _€); recall § 3.2. Next assume the adaptive procedure has
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Figure 5.1: Chebyshev preconditioned polynomial (m = 5) for S = [1, 10]

been called, and let p be an eigenvalue estimate for pm(A) such that p E E(pM(A)), the convex

hull of a(pm(A)). (This is true of the estimates we will obtain.) The desired eigenvalue estimate
for A is one of the inverse images of p; the task is to determine which one. It is important that
the inverse image chosen lie in E(A). Otherwise S is improperly and irrevocably expanded,

which slows the convergence of subsequent CG iterations.

Suppose first that p E J,. Then there exists an inverse image of u inside S. Since there is
no justification for expanding S, this estimate may be discarded. If every eigenvalue estimate

for p,.(A) is in J,, there is no need to update S, and the CG iteration resumes. The adaptive
procedure has yielded no new information.

Now suppose p % J,. SinceP E E-(p (A)), 1 must have an inverse image in E(A)\S,
which means there is an eigenvalue of A outside S. If an estimate, A, of this eigenvalue can be

recovered, S can be expanded, and a new, better preconditioner computed. When m is odd,

it easy to extract A from p, as may be seen in Figure 5.1. For example, let p = Pl < I - C.

Since pm(A) is monotonically increasing for A E (0,c), there is a unique A1 E (0,c) such that

jul = P,,(AI). Moreover, since pi E H(p(A)), Al must lie in Z(A). Therefore, c should be

decreased to Al. Similarly, if p = P2 > 1 + e, d should be increased to A2, the unique inverse
image of 02. Note that estimates for only the smallest and largest eigenvalues of p,(A) are
needed, for these yield estimates for the extreme eigenvalues of A.

To compute the inverse images of pt and P2, a rootfinder could be used, but this is unnec-
essary because p.(A) is known explicitly. For m odd and d 0 c, one may show

Al 1  ((d +c) -(d -c) cosh cosh' L 1) (5.2)
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Figure 5.2: Chebyshev preconditioned polynomial (m = 4) for S = [1, 10]

and a n 2 = 1 ( ( d c ) c o h I o s h - 1 ( 5 3

If d = c (a common choice for the initial S), then

A, d(I -(1 ;p1)M) and A2  d(1+(pa - 1)/) (5.4)

So far we have assumed that m is odd, which is important for two reasons. To see why,
consider Figure 5.2, in which m is even. As before, any eigenvalue estimates for pm(A) in J,
are discarded. Since both tails of p,(A) are negative, there can be no estimate p > 1 + e, so
suppose s < 1 - e. There are now two inverse images, A, and A2 , at least one of which lies
in E(A). The question is this: which one is it? If the wrong one is chosen, the set S may be
incorrectly enlarged, and the CG method will converge more slowly than necessary. To avoid
this ambiguity, we shall always choose m odd.

Another advantage of choosing m odd is that it yields robust CG methods. By this we mean
that p,(A) is hpd for any hpd A and for any set S. If this were not true, the CG method might
not be defined in the early iterations. For example, if m were even and there were an eigenvalue
of A greater than the largest root of C(A),, p,(A) would be indefinite, in which case GCGHS
and PCR are inappropriate, as are the Omin implementations of PCG, PPCR and GCR. One
would have to use the Odir or Odir/Omin implementation of PCG, PPCR, or GCR. When m
is odd, on the other hand, p,,(A) is hpd for any set S and the Omin implementation of each
method in Table 2.1 is applicable.

5.2. Resume versus Restart. After eigenvalue estimates for A are computed, the set
S is expanded, and a new preconditioning polynomial, O(A), is determined. The adaptive
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procedure must now decide whether the CG iteration should be resumed using the current
preconditioner or restarted using the new preconditioner. This choice is discussed next.

Let p,.(A) be the preconditioned polynomial for S = [c,d], the current approximation to
E(A). Also let pi < 1 -c and 02 > 1 + c be the new eigenvalue estimates for p',,(A), and let Al
and A2 be their inverse images. If the iteration is resumed using the the current preconditioner,
the revised convergence factor is

cf,. (5.5)cf =VW + I

where r = p2/P is the revised estimate for (pm(A)).
Next let ),(A) be the preconditioned polynomial for S = [A,, A2], the new approximation

to E(A). If the iteration is restarted using the new preconditioner, the convergence factor is

cf.. = cf(O.(A)) - (5.6)

where icf.A ;%1 + 1 ..=T;1 (12 +,-1) (5.7)
= (#,()) 1 -"' ' \2 - AI

is the condition number estimate for fm(A).
Although cfne < cf,,,, the difference may be too small to warrant restarting the CG

iteration. Using equation (3.10), it is possible to predict the number of CG steps the current
iteration will need to converge to within some tolerance. It is also possible to predict how many

steps the restarted iteration will need. If these two numbers differ by one, for example, the
iteration should be resumed. Otherwise, the CG iteration should be restarted.

Since S is either expanded or unchanged with each call to the adaptive procedure, it is
important that the initial set, So, be such that So C E(A). If the matrix A is scaled to have unit
diagonal, one may take So = [1, 1]. A more general choice is So = [r, r], where r = trace(A)/N
and N is the order of A. One might also consider initially using the LS-Chebyshev polynomial.

It is important to note that S = E(A) need not give the optimum rate of convergence. In
practice, convergence may be more rapid when S is a proper subset of E(A). To understand
why, recall that the true rate of convergence of a CG method depends on the distribution of the
eigenvalues of A within E(A). For example, suppose A1 < A2 . Then S = [A2 , AN] is a better
choice than (Al, AN]. The reason is that CG methods pick out isolated eigenvalues and rapidly
suppress the error in the direction of corresponding eigenvectors. Unfortunately, one seldom

knows such detailed information about a(A). Although the recent idea of Freund [141 to use
the Lanczos eigenvalue estimates to approximate the eigenvalue distribution of A is appealing,
it is unclear whether this can be done dynamically.

5.3. Performance. Having introduced the theory behind the adaptive procedure, we now
consider its performance in practice. As we will see, the adaptive procedure works remarkably
well in that it quickly and accurately determines A, and A. Since this section is concerned only
with the performance of the adaptive procedure, the test problems are small. Results for much
larger problems are given in 1 6, where we examine the performance of adaptive polynomial
preconditioned CG algorithms.
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N = 2500 m=7
Ik \I J A J action
0 0.10000e+O1 0.10000e+01 initial
5 0.24762e-01 0.19870e+01 restart
10 0.27832e-02 0.19962e+01 restart
1 0.27577e-02 0.19972e+01 resume
20 0.19262e-02 0.19981e+01 resume
25 0.18981e-02 0.19981e+01 resume

0.18968e-02 0.19981e+01 resume

true 0.18967e-02 I 0.19981e+01 I

Table 5.1: PCG Adaptive Procedure for 5-Point Laplacian

The tables below summarize the behavior of the adaptive procedure for two simple test
problems. The matrices have order 2500 and result from a 5-point and 9-point finite difference
approximation to the 2-dimensional Laplacian. Although PCG results are given only for a
polynomial of degree 7, these results are typical. In each table we list the estimates for ,
and Ad computed by the adaptive procedure, which is called every five steps. The adaptive
algorithm is initially given c = d = 1. In the last column we report the action taken by the

adaptive procedure.

Consider Table 5.1. After five steps, the adaptive procedure found new estimates for \c and
Ad and decided to restart the iteration using a new preconditioning polynomial based on these
estimates. After another five steps, the adaptive procedure refined its estimates for \, and \d
and again restarted. From here on it continues to improve its estimates for Xc and Ad, but opts
to resume the iteration using the polynomial determined at step 10. Similar behavior is seen in

Table 5.2. We remark that Ac and \d are found more quickly with higher degree polynomials.
The performance described here is typical. Although the estimates for , and Ad eventually

converge to their true values, the adaptive procedure often finds satisfactory estimates early

on in the iteration. In other words, the adaptive procedure is able to find a nearly optimum
polynomial preconditioner within a few calls. This means that there is little overhead associated
with the adaptive procedure. Finally, we remark that the resume versus restart decision is an

important one: it can make a dramatic difference in the number of steps required for convergence

to the solution of the linear system.

N = 2500 _ m=7
k A. \,I action
0 0.10000e+01 0.10000e+01 initial
5 0.17330e-01 0.14347e+01 restart

10 0.15041e-01 0.15959e+01 restart
15 0.22899&-02 0.1696 e+01 restart

20 0.22899e-02 0.15990e+01 resume
25 0.22899e-02 0.15992e+0l rerume

[true 0.22753e-02 0.15992e+01 ]
Table 5.2: PCG Adaptive Procedure for 9-Point Laplacian
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6. Numerical Experiments. In this section we demonstrate the effectiveness
of adaptive polynomial preconditioning on a Cray X-MP/48 and Alliant FX/8 for some large
matrices arising in hydrology. In particular, we show that polynomial preconditioned PCG
(PPCG) can converge in less CPU time than the unpreconditioned CGHS method. Although
we do not compare it with other preconditionings, we emphasize that polynomial precondition-
ing can be used to further accelerate any other preconditioning, for example, an incomplete
factorization.

6.1. Description of Experiments. Our test matrices, which arise in the modeling of
groundwater flow in a heterogeneous aquifer, result from the 7-point finite difference approxima-
tion to a three-dimensional elliptic PDE with variable coefficients. Although several parameters
determine the difficulty of the problem, we isolate just two. In the first set of experiments, run
on a Cray X-MP/48, the hydraulic conductivity field K is uncorrelated, which makes the prob-
lem difficult. In the second set of experiments, run on an Alliant FX/8, the field is correlated.
For each machine we vary 7, the standard deviation of the In K field. As y increases, so does
ic(A), the condition number of A. See [24] for details.

In the tables below, m is the degree of the preconditioned polynomial, p (A). The first
row of each table, m = 1, corresponds to the unpreconditioned CGHS method. We next give
the number of CPU seconds required for convergence of the CG iteration, which includes the
adaptive procedure. The iteration was halted once the relative error was brought below 10-

on the Cray and 10- 6 on the Alliant. In the last column of each table we list the ratio of CGHS
time to PPCG time. If this ratio is greater than 1, we say that polynomial preconditioning
is effective. In all the experiments, the right-hand-side vector b was chosen so that the true
solution vector has 1 in each component, and the initial guess was the zero vector. Since the
matrix was symmetrically scaled to have unit diagonal, we set co = do = 1 in the adaptive
procedure. New eigenvalue estimates were computed every ten steps with a maximum of ten
calls to the adaptive procedure. Finally, we note that the results below were taken from [3] and
[24].

6.2. Discussion of Results. In Tables 6.1-6.3 we report results for a single vector
processor of a Cray X-MP/48. In the first table, the condition number of A is about 60,000,
as estimated by the adaptive procedure. Here we obtain a 15% improvement over CGHS with
a polynomial of degree 5. In the next two tables, ,(A) is 160,000 and 360,000, respectively,
corresponding to -7 = 1.5 and 7 = 1.75. Notice that polynomial preconditioning is more effective
here: it reduces the CPU time required to solve the problem by about 25%. Also observe that
the optimum m is increasing with r(A).

In Tables 6.4-6.6 we see similar qualitative results for the Alliant FX/8, which is an 8-
vector-processor machine. Although the problems are much larger, they are not nearly as
ill-conditioned. (We estimate the condition numbers to be 8,400, 14,000, and 26,000.) We
once again see the best performance on the hardest problem. Moreover, notice the much larger
CGHS/PPCG ratios: the time required to solve the problem has been nearly cut in half. The
computer architecture does indeed make a difference.
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N =103,823 _ _ 
= 1.0

m Iterations Seconds CGHS/PPCG
1 1112 18,00 1.00
3 386 15.77 1.14
5 242 15.65 1.15
7 229 20.59 0.87
9 215 24.82 0.73

11 152 21.35 0.84

Table 6.1: Cray X-MP/48 CPU Times

N = 103,823 f7 = 1.5
m Iterations Seconds CGHS/PPCG
1 2315 37.04 1.00
3 780 31.81 1.16
5 473 30.56 1.21
7 341 30.22 1.23
9 268 30.16 1.23

11 227 31.28 1.18
13 213 34.84 1.06

Table 6.2: Cray X-MP/48 CPU Times

6.3. Conclusions. In this section we have the demonstrated the effectiveness of polyno-
mial preconditioning on a Cray X-MP/48 and an Alliant FX/8. We have seen that polynomial
preconditioning is most effective when the matrix A is ill-conditioned. Moreover, as fc(A) in-
creases, so does the optimum degree m. In general, however, low degree (2-16) preconditioning
polynomials are usually best. In contrast, high degree (20-50) polynomia!s are usually best for
hermitian indefinite matrices [3, 5]. Although we have presented results for only the hydrology
problem, our conclusions are supported by a variety of other numerical experiments, including
those in [3, 7, 12, 22, 24].

We emphasize that our adaptive CG algorithms are as easy to use as CGHS, yet can reduce

N = 103,823 -f = 1.75
m Iterations Seconds CGHS/PPCG
1 4126 66.76 1.00
3 1383 57.30 1.17
5 833 54.67 1.22
7 600 53.72 1.24
9 469 53.82 1.24

11 386 53.60 1.25
13 328 53.55 1.25
15 287 53.55 1.25
17 255 53.36 1.25
19 235 55.10 1.21

Table 6.3: Cray X-MP/48 CPU Times
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N 410,625 _ _=1.0

m Iterations Seconds CGHS/PPCG
1 468 887.61 1.00
3 183 673.77 1.32
5 103 541.13 1.64
7 82 564.95 1.57
9 70 598.83 1.48
11 57 586.48 1.51

Table 6.4: Alliant FX/8 CPU Times

N 410,625 y = 1.7
m Iterations Seconds CGHS/PPCG
1 607 1141.40 1.00
3 249 910.98 1.25
5 155 801.22 1.42
7 95 664.83 1.76
9 79 684.41 1.70
11 69 714.39 1.62

Table 6.5: Alliant FX/8 CPU Times

the CPU time required to solve the linear system. The amount of reduction depends on the
computer architecture. We note that Hoist [201 has obtained results similar to those for the
Alliant on a Cray 2. In particular, he has reported CGHS/PPCG ratios of nearly 2 to 1, which
is far better than those achieved on the X-MP. Chan et al. [7] have shown that polynomial
preconditioning is competitive with other preconditioners on the massively parallel CM-2.

7. Summary. In this paper we have explored the use of adaptive polynomial pre-
conditioning for hermitian positive definite linear systems. Such preconditioners are easy to
employ and well-suited to vector and/or parallel computer architectures. After reviewing pre-
conditioned CG methods, we showed how one could use a polynomial preconditioner in a variety
of different ways. We then discussed the least squares and Chebyshev preconditioning poly-
nomials, studied them in the context of CG methods, and showed that the latter minimizes
a bound on the condition number of the preconditioned matrix. We next compared the two

N = 410,625 -f = 2.3

m Iterations Seconds CGHS/PPCG71 839 1584.50 1.00
3 308 1108.60 1.43
5 205 1057.20 1.50
7 134 913.34 1.73
9 103 869.94 1.82
II 88 889.15 1.78

Table 6.6: Alliant FX/8 CPU Times
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polynomials in a variety of numerical experiments. In particular, we sought to determine those
eigenvalue distributions for which each is well-suited. The least squares polynomial is superior
for those matrices whose eigenvalues are dense near the largest eigenvalue, Ad. In contrast, the

Chebyshev preconditioner is superior when the eigenvalues are dense throughout the interval
or when the gap between successive eigenvalues is smaller than the smallest eigenvalue, A. We
next described an adaptive procedure for dynamically computing A and Ad, which are needed

to determine the optimal Chebyshev polynomial preconditioner. The accuracy and efficiency of
this adaptive procedure was also demonstrated. Finally, in the previous section, we presented
some numerical results that demonstrate the effectiveness of adaptive polynomial precondi-
tioning for some large matrices arising in hydrology. Our results suggest that relatively low
degree (2-16) polynomials are usually best. Moreover, the optimum degree m of the polyno-

mial tends to increase with the condition number of A, as does the effectiveness of polynomial

preconditioning.
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